These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 21928995)

  • 21. Statistical mechanics of the disjoining pressure of a planar film.
    Henderson JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051602. PubMed ID: 16383612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel weighted density functional theory for adsorption, fluid-solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces.
    Yu YX
    J Chem Phys; 2009 Jul; 131(2):024704. PubMed ID: 19604007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Derivation of a non-local interfacial Hamiltonian for short-ranged wetting: I. Double-parabola approximation.
    Parry AO; Rascón C; Bernardino NR; Romero-Enrique JM
    J Phys Condens Matter; 2006 Jul; 18(28):6433-51. PubMed ID: 21690845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mercury wetting film on sapphire.
    Ohmasa Y; Kajihara Y; Yao M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051601. PubMed ID: 11414910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pressure, surface tension, and curvature in active systems: A touch of equilibrium.
    Wittmann R; Smallenburg F; Brader JM
    J Chem Phys; 2019 May; 150(17):174908. PubMed ID: 31067903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory.
    Evans R; Stewart MC; Wilding NB
    J Chem Phys; 2017 Jul; 147(4):044701. PubMed ID: 28764342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wetting of a spherical particle by a nematic liquid crystal.
    Fukuda J; Stark H; Yokoyama H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021714. PubMed ID: 14995476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wetting behavior of spherical nanoparticles at a vapor-liquid interface: a density functional theory study.
    Zeng M; Mi J; Zhong C
    Phys Chem Chem Phys; 2011 Mar; 13(9):3932-41. PubMed ID: 21212890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Derivation of a non-local interfacial model for 3D wetting in an external field.
    Bernardino NR; Parry AO; Rascón C; Romero-Enrique JM
    J Phys Condens Matter; 2009 Nov; 21(46):465105. PubMed ID: 21715903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sedimentation equilibrium of colloidal suspensions in a planar pore based on density functional theory and the hard-core attractive Yukawa model.
    Zhou S; Sun H
    J Phys Chem B; 2005 Apr; 109(13):6397-404. PubMed ID: 16851712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microscopic aspects of wetting using classical density functional theory.
    Yatsyshin P; Durán-Olivencia MA; Kalliadasis S
    J Phys Condens Matter; 2018 Jul; 30(27):274003. PubMed ID: 29786608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wetting behavior of a colloidal particle trapped at a composite liquid-vapor interface of a binary liquid mixture.
    Kim H; Schimmele L; Dietrich S
    Phys Rev E; 2021 Apr; 103(4-1):042802. PubMed ID: 34005893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Density functional theory of long-range critical wetting.
    Gonzalez A; Telo Da Gama MM
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6571-6. PubMed ID: 11101994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Butler-Sugimoto monomolecular bilayer interface model: the effect of oxygen on the surface tension of a liquid metal and its wetting of a ceramic.
    Yen PS; Datta R
    J Colloid Interface Sci; 2014 Jul; 426():314-23. PubMed ID: 24863799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling.
    Hughes AP; Thiele U; Archer AJ
    J Chem Phys; 2015 Feb; 142(7):074702. PubMed ID: 25702019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding the influence of Coulomb and dispersion interactions on the wetting behavior of ionic liquids.
    Rane KS; Errington JR
    J Chem Phys; 2014 Nov; 141(17):174706. PubMed ID: 25381536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wetting of a symmetrical binary fluid mixture on a wall.
    Schmid F; Wilding NB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031201. PubMed ID: 11308636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correction to the interfacial tension by curvature radius: differences between droplets and bubbles.
    Castellanos AJ; Toro-Mendoza J; Garcia-Sucre M
    J Phys Chem B; 2009 Apr; 113(17):5891-6. PubMed ID: 19338313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interfacial properties of liquid-vapor interfaces with planar, spherical, and cylindrical geometries in mean field.
    Segovia-López JG; Romero-Rochín V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021601. PubMed ID: 16605344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.