These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 21929056)
1. Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method. Mehta D Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):025702. PubMed ID: 21929056 [TBL] [Abstract][Full Text] [Related]
2. Energy landscape of the finite-size mean-field 2-spin spherical model and topology trivialization. Mehta D; Hauenstein JD; Niemerg M; Simm NJ; Stariolo DA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022133. PubMed ID: 25768484 [TBL] [Abstract][Full Text] [Related]
3. Energy landscape of the finite-size spherical three-spin glass model. Mehta D; Stariolo DA; Kastner M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052143. PubMed ID: 23767523 [TBL] [Abstract][Full Text] [Related]
4. Potential energy landscape of the two-dimensional XY model: higher-index stationary points. Mehta D; Hughes C; Kastner M; Wales DJ J Chem Phys; 2014 Jun; 140(22):224503. PubMed ID: 24929403 [TBL] [Abstract][Full Text] [Related]
5. Energy-landscape analysis of the two-dimensional nearest-neighbor φ⁴ model. Mehta D; Hauenstein JD; Kastner M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061103. PubMed ID: 23005047 [TBL] [Abstract][Full Text] [Related]
6. Fixed Points of Belief Propagation-An Analysis via Polynomial Homotopy Continuation. Knoll C; Mehta D; Chen T; Pernkopf F IEEE Trans Pattern Anal Mach Intell; 2018 Sep; 40(9):2124-2136. PubMed ID: 28885150 [TBL] [Abstract][Full Text] [Related]
7. Exploring the potential energy landscape of the Thomson problem via Newton homotopies. Mehta D; Chen T; Morgan JW; Wales DJ J Chem Phys; 2015 May; 142(19):194113. PubMed ID: 26001453 [TBL] [Abstract][Full Text] [Related]
8. Stationary-point approach to the phase transition of the classical XY chain with power-law interactions. Kastner M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031114. PubMed ID: 21517461 [TBL] [Abstract][Full Text] [Related]
9. Communication: Certifying the potential energy landscape. Mehta D; Hauenstein JD; Wales DJ J Chem Phys; 2013 May; 138(17):171101. PubMed ID: 23656107 [TBL] [Abstract][Full Text] [Related]
10. Numerical algebraic geometry for model selection and its application to the life sciences. Gross E; Davis B; Ho KL; Bates DJ; Harrington HA J R Soc Interface; 2016 Oct; 13(123):. PubMed ID: 27733697 [TBL] [Abstract][Full Text] [Related]
11. Preferential attachment during the evolution of a potential energy landscape. Massen CP; Doye JP J Chem Phys; 2007 Sep; 127(11):114306. PubMed ID: 17887836 [TBL] [Abstract][Full Text] [Related]
12. Potential energy landscapes for the 2D XY model: minima, transition states, and pathways. Mehta D; Hughes C; Schröck M; Wales DJ J Chem Phys; 2013 Nov; 139(19):194503. PubMed ID: 24320335 [TBL] [Abstract][Full Text] [Related]
13. Certification and the potential energy landscape. Mehta D; Hauenstein JD; Wales DJ J Chem Phys; 2014 Jun; 140(22):224114. PubMed ID: 24929381 [TBL] [Abstract][Full Text] [Related]
14. A polynomial approach for extracting the extrema of a spherical function and its application in diffusion MRI. Ghosh A; Tsigaridas E; Mourrain B; Deriche R Med Image Anal; 2013 Jul; 17(5):503-14. PubMed ID: 23602916 [TBL] [Abstract][Full Text] [Related]
15. Global optimization on an evolving energy landscape. Hunjan JS; Sarkar S; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046704. PubMed ID: 12443377 [TBL] [Abstract][Full Text] [Related]
16. An inversion-relaxation approach for sampling stationary points of spin model Hamiltonians. Hughes C; Mehta D; Wales DJ J Chem Phys; 2014 May; 140(19):194104. PubMed ID: 24852527 [TBL] [Abstract][Full Text] [Related]
17. Minima hopping guided path search: an efficient method for finding complex chemical reaction pathways. Schaefer B; Mohr S; Amsler M; Goedecker S J Chem Phys; 2014 Jun; 140(21):214102. PubMed ID: 24907985 [TBL] [Abstract][Full Text] [Related]
18. Power-law distributions for the areas of the basins of attraction on a potential energy landscape. Massen CP; Doye JP Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):037101. PubMed ID: 17500833 [TBL] [Abstract][Full Text] [Related]
19. Numerical solution of the nonequilibrium square-gradient model and verification of local equilibrium for the Gibbs surface in a two-phase binary mixture. Glavatskiy KS; Bedeaux D Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031608. PubMed ID: 19391955 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the dynamics of glass-forming liquids from the properties of the potential energy landscape. Banerjee S; Dasgupta C Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021501. PubMed ID: 22463213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]