These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2192906)

  • 41. Glia in development, function, and neurodegeneration of the adult insect brain.
    Kretzschmar D; Pflugfelder GO
    Brain Res Bull; 2002 Jan; 57(1):121-31. PubMed ID: 11827744
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reciprocal interactions between olfactory receptor axons and olfactory nerve glia cultured from the developing moth Manduca sexta.
    Tucker ES; Tolbert LP
    Dev Biol; 2003 Aug; 260(1):9-30. PubMed ID: 12885552
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Astrocyte-like glial cells physiologically regulate olfactory processing through the modification of ORN-PN synaptic strength in Drosophila.
    Liu H; Zhou B; Yan W; Lei Z; Zhao X; Zhang K; Guo A
    Eur J Neurosci; 2014 Sep; 40(5):2744-54. PubMed ID: 24964821
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Specialized neuroglial arrangement may explain the capacity of vomeronasal axons to reinnervate central neurons.
    Raisman G
    Neuroscience; 1985 Jan; 14(1):237-54. PubMed ID: 3974880
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insect olfactory neurons in vitro: morphological and physiological characterization of cells from the developing antennal lobes of Manduca sexta.
    Hayashi JH; Hildebrand JG
    J Neurosci; 1990 Mar; 10(3):848-59. PubMed ID: 2156962
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Encouraging regeneration in the central nervous system: is there a role for olfactory ensheathing cells?
    King-Robson J
    Neurosci Res; 2011 Apr; 69(4):263-75. PubMed ID: 21185887
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synaptic organization and development of the antennal lobe in insects.
    Boeckh J; Tolbert LP
    Microsc Res Tech; 1993 Feb; 24(3):260-80. PubMed ID: 8431606
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aggregation of f-actin in olfactory glomeruli: a common feature of glomeruli across phyla.
    Rössler W; Kuduz J; Schürmann FW; Schild D
    Chem Senses; 2002 Nov; 27(9):803-10. PubMed ID: 12438205
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Developmental distribution of CaM kinase II in the antennal lobe of the sphinx moth Manduca sexta.
    Lohr C; Bergstein S; Hirnet D
    Cell Tissue Res; 2007 Jan; 327(1):189-97. PubMed ID: 16896952
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neuroglial arrangements in the olfactory glomeruli of the hedgehog.
    Valverde F; Lopez-Mascaraque L
    J Comp Neurol; 1991 May; 307(4):658-74. PubMed ID: 1714466
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Olfactory ensheathing glia: properties and function.
    Ramón-Cueto A; Avila J
    Brain Res Bull; 1998 Jun; 46(3):175-87. PubMed ID: 9667810
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Roles of glia in the Drosophila nervous system.
    Parker RJ; Auld VJ
    Semin Cell Dev Biol; 2006 Feb; 17(1):66-77. PubMed ID: 16420983
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Odorant-evoked nitric oxide signals in the antennal lobe of Manduca sexta.
    Collmann C; Carlsson MA; Hansson BS; Nighorn A
    J Neurosci; 2004 Jul; 24(27):6070-7. PubMed ID: 15240798
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vitro analyses of interactions between olfactory receptor growth cones and glial cells that mediate axon sorting and glomerulus formation.
    Tucker ES; Oland LA; Tolbert LP
    J Comp Neurol; 2004 May; 472(4):478-95. PubMed ID: 15065121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The protocadherin-alpha family is involved in axonal coalescence of olfactory sensory neurons into glomeruli of the olfactory bulb in mouse.
    Hasegawa S; Hamada S; Kumode Y; Esumi S; Katori S; Fukuda E; Uchiyama Y; Hirabayashi T; Mombaerts P; Yagi T
    Mol Cell Neurosci; 2008 May; 38(1):66-79. PubMed ID: 18353676
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of the olfactory bulb: evidence for glia-neuron interactions in glomerular formation.
    Bailey MS; Puche AC; Shipley MT
    J Comp Neurol; 1999 Dec; 415(4):423-48. PubMed ID: 10570454
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct and glia-mediated effects of GABA on development of central olfactory neurons.
    Mallory HS; Gibson NJ; Hayashi JH; Nighorn AJ; Oland LA
    Neuron Glia Biol; 2011 May; 7(2-4):143-61. PubMed ID: 22874585
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasticity in the olfactory cortex: age-dependent effects of deafferentation.
    Friedman B; Price JL
    J Comp Neurol; 1986 Apr; 246(1):1-19. PubMed ID: 3700712
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a glial network in the olfactory nerve: role of calcium and neuronal activity.
    Koussa MA; Tolbert LP; Oland LA
    Neuron Glia Biol; 2010 Nov; 6(4):245-61. PubMed ID: 21933469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regeneration of olfactory afferent axons in the locust brain.
    Stern M; Scheiblich H; Eickhoff R; Didwischus N; Bicker G
    J Comp Neurol; 2012 Mar; 520(4):679-93. PubMed ID: 21935945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.