These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21929174)

  • 1. Designing isotropic interactions for self-assembly of complex lattices.
    Edlund E; Lindgren O; Jacobi MN
    Phys Rev Lett; 2011 Aug; 107(8):085503. PubMed ID: 21929174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing convex repulsive pair potentials that favor assembly of kagome and snub square lattices.
    Piñeros WD; Baldea M; Truskett TM
    J Chem Phys; 2016 Aug; 145(5):054901. PubMed ID: 27497576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic diamond and wurtzite structures self-assemble with isotropic pair interactions.
    Rechtsman MC; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031403. PubMed ID: 17500697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse design of triblock Janus spheres for self-assembly of complex structures in the crystallization slot
    Rivera-Rivera LY; Moore TC; Glotzer SC
    Soft Matter; 2023 Apr; 19(15):2726-2736. PubMed ID: 36974942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the spin magnitude of the magnetic ion in determining the frustration and low-temperature properties of kagome lattices.
    Pati SK; Rao CN
    J Chem Phys; 2005 Dec; 123(23):234703. PubMed ID: 16392940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of the simple cubic lattice with an isotropic potential.
    Rechtsman MC; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021404. PubMed ID: 17025422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-energy functional method for inverse problem of self assembly.
    Torikai M
    J Chem Phys; 2015 Apr; 142(14):144102. PubMed ID: 25877557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the limitations of isotropic pair potentials to produce ground-state structural extremes via inverse statistical mechanics.
    Zhang G; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042309. PubMed ID: 24229174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-additive simple potentials for pre-programmed self-assembly.
    Salgado-Blanco D; Mendoza CI
    Soft Matter; 2015 Feb; 11(5):889-97. PubMed ID: 25489904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing pairwise interactions that stabilize open crystals: Truncated square and truncated hexagonal lattices.
    Piñeros WD; Truskett TM
    J Chem Phys; 2017 Apr; 146(14):144501. PubMed ID: 28411598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed interaction potentials via inverse methods for self-assembly.
    Rechtsman M; Stillinger F; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011406. PubMed ID: 16486139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin frustration in 2D kagomé lattices: a problem for inorganic synthetic chemistry.
    Nocera DG; Bartlett BM; Grohol D; Papoutsakis D; Shores MP
    Chemistry; 2004 Aug; 10(16):3850-9. PubMed ID: 15316993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing genuine multisite entanglement in isotropic spin lattices.
    Dhar HS; Sen De A; Sen U
    Phys Rev Lett; 2013 Aug; 111(7):070501. PubMed ID: 23992053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultracold atoms in a tunable optical kagome lattice.
    Jo GB; Guzman J; Thomas CK; Hosur P; Vishwanath A; Stamper-Kurn DM
    Phys Rev Lett; 2012 Jan; 108(4):045305. PubMed ID: 22400856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ising antiferromagnet on the Archimedean lattices.
    Yu U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062121. PubMed ID: 26172675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spin dynamics in distorted kagome lattices: a comparative Raman study.
    Wulferding D; Lemmens P; Yoshida H; Okamoto Y; Hiroi Z
    J Phys Condens Matter; 2012 May; 24(18):185602. PubMed ID: 22508934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral surfaces self-assembling in one-component systems with isotropic interactions.
    Edlund E; Lindgren O; Jacobi MN
    Phys Rev Lett; 2012 Apr; 108(16):165502. PubMed ID: 22680733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic-field induced spin-Peierls instability in strongly frustrated quantum spin lattices.
    Richter J; Derzhko O; Schulenburg J
    Phys Rev Lett; 2004 Sep; 93(10):107206. PubMed ID: 15447447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the uncertainty principle to design simple interactions for targeted self-assembly.
    Edlund E; Lindgren O; Jacobi MN
    J Chem Phys; 2013 Jul; 139(2):024107. PubMed ID: 23862929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of kagome lattices, entangled webs and linear fibers with vibrating patchy particles in two dimensions.
    Chapela GA; Guzmán O; Martínez-González JA; Díaz-Leyva P; Quintana-H J
    Soft Matter; 2014 Dec; 10(45):9167-76. PubMed ID: 25319927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.