These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 219293)

  • 21. Alpha 2-adrenergic receptors in neuroblastoma x glioma hybrid cells. Characterization with agonist and antagonist radioligands and relationship to adenylate cyclase.
    Kahn DJ; Mitrius JC; U'Prichard DC
    Mol Pharmacol; 1982 Jan; 21(1):17-26. PubMed ID: 6127618
    [No Abstract]   [Full Text] [Related]  

  • 22. Sodium inhibits both adenylate cyclase and high-affinity 3H-labeled p-aminoclonidine binding to alpha 2-adrenergic receptors in purified human platelet membranes.
    Mooney JJ; Horne WC; Handin RI; Schildkraut JJ; Alexander RW
    Mol Pharmacol; 1982 May; 21(3):600-8. PubMed ID: 6287197
    [No Abstract]   [Full Text] [Related]  

  • 23. Adenylate cyclase and catecholamine binding in plasma membrane-enriched preparations of cardiac and skeletal muscle.
    Drummond GI; Vallières J; Drummond M
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():161-82. PubMed ID: 176693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficiency of coupling between the beta adrenergic receptor and adenylate cyclase.
    Howlett AC; Van Arsdale PM; Gilman AG
    Mol Pharmacol; 1978 Jul; 14(4):531-9. PubMed ID: 210367
    [No Abstract]   [Full Text] [Related]  

  • 25. The alpha 2-adrenergic receptor: multiple affinity states and regulation of a receptor inversely coupled to adenylate cyclase.
    U'Prichard DC; Mitrius JC; Kahn DJ; Perry BD
    Adv Biochem Psychopharmacol; 1983; 36():53-72. PubMed ID: 6134436
    [No Abstract]   [Full Text] [Related]  

  • 26. [3H]dihydroergotamine as a high-affinity, slowly dissociating radioligand for 5-HT1B binding sites in rat brain membranes: evidence for guanine nucleotide regulation of agonist affinity states.
    Hamblin MW; Ariani K; Adriaenssens PI; Ciaranello RD
    J Pharmacol Exp Ther; 1987 Dec; 243(3):989-1001. PubMed ID: 2826763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [3H]WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity.
    Norman AB; Battaglia G; Creese I
    Mol Pharmacol; 1985 Dec; 28(6):487-94. PubMed ID: 2867462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple alpha 2-noradrenergic receptor sites in rat brain: selective regulation of high-affinity [3H]clonidine binding by guanine nucleotides and divalent cations.
    Rouot BM; U'Prichard DC; Snyder SH
    J Neurochem; 1980 Feb; 34(2):374-84. PubMed ID: 6251166
    [No Abstract]   [Full Text] [Related]  

  • 29. [Receptor-related effector substance (catecholamines)].
    Hazeki O; Ui M
    Nihon Rinsho; 1979; 37(7):2759-66. PubMed ID: 231131
    [No Abstract]   [Full Text] [Related]  

  • 30. Agonist-specific effects of monovalent and divalent cations on adenylate cyclase-coupled alpha adrenergic receptors in rabbit platelets.
    Tsai BS; Lefkowitz RJ
    Mol Pharmacol; 1978 Jul; 14(4):540-8. PubMed ID: 210368
    [No Abstract]   [Full Text] [Related]  

  • 31. Identity of [3H]-dihydroalprenolol binding sites and beta-adrenergic receptors coupled with adenylate cyclase in the central nervous system: pharmacological properties, distribution and adaptive responsiveness.
    Dolphin A; Adrien J; Hamon M; Bockaert J
    Mol Pharmacol; 1979 Jan; 15(1):1-15. PubMed ID: 218089
    [No Abstract]   [Full Text] [Related]  

  • 32. Guanyl nucleotide influences on 3H-ligand binding to alpha-noradrenergic receptors in calf brain membranes.
    U'Prichard DC; Snyder SH
    J Biol Chem; 1978 May; 253(10):3444-52. PubMed ID: 25888
    [No Abstract]   [Full Text] [Related]  

  • 33. 3H-Catecholamine binding to alpha-receptors in rat brain: enhancement by reserpine.
    U'Prichard DC; Snyder SH
    Eur J Pharmacol; 1978 Sep; 51(2):145-55. PubMed ID: 212279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential regulation of the alpha 2-adrenergic receptor by Na+ and guanine nucleotides.
    Michel T; Hoffman BB; Lefkowitz RJ
    Nature; 1980 Dec; 288(5792):709-11. PubMed ID: 6256638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Age-related alterations in the development of adrenergic denervation supersensitivity.
    Weiss B; Greenberg L; Cantor E
    Fed Proc; 1979 Apr; 38(5):1915-21. PubMed ID: 218849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discrepancy in the regulatory effects of sodium and guanine nucleotides on adrenaline and clonidine binding to alpha 2-adrenoceptors in human fat cell membranes.
    Gonzalez JL; Carpene C; Berlan M; LaFontan M
    Eur J Pharmacol; 1981 Dec; 76(2-3):289-93. PubMed ID: 6277648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and characterization of adrenergic receptors and catecholamine-stimulated adenylate cyclase in hog pial membranes.
    Friedman AH; Davis JN
    Brain Res; 1980 Feb; 183(1):89-102. PubMed ID: 6244051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of chronic ethanol ingestion on mouse brain beta-adrenergic receptors (BAR) and adenylate cyclase.
    Valverius P; Hoffman PL; Tabakoff B
    Adv Alcohol Subst Abuse; 1988; 7(3-4):99-101. PubMed ID: 2851934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beta-adrenergic receptors: regulatory role of agonists.
    Lefkowitz RJ; Limbird LE; Williams LT; Wessels M
    J Supramol Struct; 1978; 8(4):501-10. PubMed ID: 31515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of agonist and antagonist interactions at kidney alpha 1-adrenoceptors by nucleotides and metal ions.
    Ernsberger P; U'Prichard DC
    Eur J Pharmacol; 1987 Jan; 133(2):165-76. PubMed ID: 2880738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.