These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 21930784)
1. A novel phospholipase D2-Grb2-WASp heterotrimer regulates leukocyte phagocytosis in a two-step mechanism. Kantonen S; Hatton N; Mahankali M; Henkels KM; Park H; Cox D; Gomez-Cambronero J Mol Cell Biol; 2011 Nov; 31(22):4524-37. PubMed ID: 21930784 [TBL] [Abstract][Full Text] [Related]
2. The molecular basis of phospholipase D2-induced chemotaxis: elucidation of differential pathways in macrophages and fibroblasts. Knapek K; Frondorf K; Post J; Short S; Cox D; Gomez-Cambronero J Mol Cell Biol; 2010 Sep; 30(18):4492-506. PubMed ID: 20647543 [TBL] [Abstract][Full Text] [Related]
3. The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF). Gomez-Cambronero J Cell Signal; 2011 Dec; 23(12):1885-95. PubMed ID: 21740967 [TBL] [Abstract][Full Text] [Related]
4. Oxidized LDL phagocytosis during foam cell formation in atherosclerotic plaques relies on a PLD2-CD36 functional interdependence. Ganesan R; Henkels KM; Wrenshall LE; Kanaho Y; Di Paolo G; Frohman MA; Gomez-Cambronero J J Leukoc Biol; 2018 May; 103(5):867-883. PubMed ID: 29656494 [TBL] [Abstract][Full Text] [Related]
5. The mechanism of cell membrane ruffling relies on a phospholipase D2 (PLD2), Grb2 and Rac2 association. Mahankali M; Peng HJ; Cox D; Gomez-Cambronero J Cell Signal; 2011 Aug; 23(8):1291-8. PubMed ID: 21419846 [TBL] [Abstract][Full Text] [Related]
6. The Grb2/PLD2 interaction is essential for lipase activity, intracellular localization and signaling in response to EGF. Di Fulvio M; Frondorf K; Henkels KM; Lehman N; Gomez-Cambronero J J Mol Biol; 2007 Mar; 367(3):814-24. PubMed ID: 17276458 [TBL] [Abstract][Full Text] [Related]
7. GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex. Carlier MF; Nioche P; Broutin-L'Hermite I; Boujemaa R; Le Clainche C; Egile C; Garbay C; Ducruix A; Sansonetti P; Pantaloni D J Biol Chem; 2000 Jul; 275(29):21946-52. PubMed ID: 10781580 [TBL] [Abstract][Full Text] [Related]
8. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. Miki H; Miura K; Takenawa T EMBO J; 1996 Oct; 15(19):5326-35. PubMed ID: 8895577 [TBL] [Abstract][Full Text] [Related]
9. Cdc42 regulates Fc gamma receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP. Park H; Cox D Mol Biol Cell; 2009 Nov; 20(21):4500-8. PubMed ID: 19741094 [TBL] [Abstract][Full Text] [Related]
10. Phospholipase D2 (PLD2) is a guanine nucleotide exchange factor (GEF) for the GTPase Rac2. Mahankali M; Peng HJ; Henkels KM; Dinauer MC; Gomez-Cambronero J Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19617-22. PubMed ID: 22106281 [TBL] [Abstract][Full Text] [Related]
11. Wiskott-Aldrich syndrome protein is a key regulator of the phagocytic cup formation in macrophages. Tsuboi S; Meerloo J J Biol Chem; 2007 Nov; 282(47):34194-203. PubMed ID: 17890224 [TBL] [Abstract][Full Text] [Related]
12. Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells. She HY; Rockow S; Tang J; Nishimura R; Skolnik EY; Chen M; Margolis B; Li W Mol Biol Cell; 1997 Sep; 8(9):1709-21. PubMed ID: 9307968 [TBL] [Abstract][Full Text] [Related]
13. Myogenic differentiation depends on the interplay of Grb2 and N-WASP. Mitra P; Thanabalu T Biochim Biophys Acta Mol Cell Res; 2017 Mar; 1864(3):487-497. PubMed ID: 27965114 [TBL] [Abstract][Full Text] [Related]
14. Phospholipase D2-derived phosphatidic acid binds to and activates ribosomal p70 S6 kinase independently of mTOR. Lehman N; Ledford B; Di Fulvio M; Frondorf K; McPhail LC; Gomez-Cambronero J FASEB J; 2007 Apr; 21(4):1075-87. PubMed ID: 17242159 [TBL] [Abstract][Full Text] [Related]
15. The elucidation of novel SH2 binding sites on PLD2. Di Fulvio M; Lehman N; Lin X; Lopez I; Gomez-Cambronero J Oncogene; 2006 May; 25(21):3032-40. PubMed ID: 16407827 [TBL] [Abstract][Full Text] [Related]
16. Mutation of Y179 on phospholipase D2 (PLD2) upregulates DNA synthesis in a PI3K-and Akt-dependent manner. Di Fulvio M; Frondorf K; Gomez-Cambronero J Cell Signal; 2008 Jan; 20(1):176-85. PubMed ID: 18006275 [TBL] [Abstract][Full Text] [Related]
17. Ral isoforms are implicated in Fc gamma R-mediated phagocytosis: activation of phospholipase D by RalA. Corrotte M; Nyguyen AP; Harlay ML; Vitale N; Bader MF; Grant NJ J Immunol; 2010 Sep; 185(5):2942-50. PubMed ID: 20679536 [TBL] [Abstract][Full Text] [Related]
18. The Lipase Activity of Phospholipase D2 is Responsible for Nigral Neurodegeneration in a Rat Model of Parkinson's Disease. Mendez-Gomez HR; Singh J; Meyers C; Chen W; Gorbatyuk OS; Muzyczka N Neuroscience; 2018 May; 377():174-183. PubMed ID: 29526688 [TBL] [Abstract][Full Text] [Related]
19. The uncovering of a novel regulatory mechanism for PLD2: formation of a ternary complex with protein tyrosine phosphatase PTP1B and growth factor receptor-bound protein GRB2. Horn J; Lopez I; Miller MW; Gomez-Cambronero J Biochem Biophys Res Commun; 2005 Jun; 332(1):58-67. PubMed ID: 15896299 [TBL] [Abstract][Full Text] [Related]
20. Actin directly interacts with phospholipase D, inhibiting its activity. Lee S; Park JB; Kim JH; Kim Y; Kim JH; Shin KJ; Lee JS; Ha SH; Suh PG; Ryu SH J Biol Chem; 2001 Jul; 276(30):28252-60. PubMed ID: 11373276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]