BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 21930901)

  • 1. Investigating the electrophysiological basis of resting state networks using magnetoencephalography.
    Brookes MJ; Woolrich M; Luckhoo H; Price D; Hale JR; Stephenson MC; Barnes GR; Smith SM; Morris PG
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16783-8. PubMed ID: 21930901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting haemodynamic networks using electrophysiology: The role of non-linear and cross-frequency interactions.
    Tewarie P; Bright MG; Hillebrand A; Robson SE; Gascoyne LE; Morris PG; Meier J; Van Mieghem P; Brookes MJ
    Neuroimage; 2016 Apr; 130():273-292. PubMed ID: 26827811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deriving frequency-dependent spatial patterns in MEG-derived resting state sensorimotor network: A novel multiband ICA technique.
    Nugent AC; Luber B; Carver FW; Robinson SE; Coppola R; Zarate CA
    Hum Brain Mapp; 2017 Feb; 38(2):779-791. PubMed ID: 27770478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal dynamics of spontaneous MEG activity in brain networks.
    de Pasquale F; Della Penna S; Snyder AZ; Lewis C; Mantini D; Marzetti L; Belardinelli P; Ciancetta L; Pizzella V; Romani GL; Corbetta M
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6040-5. PubMed ID: 20304792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity.
    Messaritaki E; Koelewijn L; Dima DC; Williams GM; Perry G; Singh KD
    Neuroimage; 2017 Oct; 159():302-324. PubMed ID: 28735011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter- and intra-subject variability of neuromagnetic resting state networks.
    Wens V; Bourguignon M; Goldman S; Marty B; Op de Beeck M; Clumeck C; Mary A; Peigneux P; Van Bogaert P; Brookes MJ; De Tiège X
    Brain Topogr; 2014 Sep; 27(5):620-34. PubMed ID: 24777562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of sub-second neural events in spontaneous brain activity.
    Florin E; Watanabe M; Logothetis NK
    Curr Opin Neurobiol; 2015 Jun; 32():24-30. PubMed ID: 25463561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source-reconstruction of the sensorimotor network from resting-state macaque electrocorticography.
    Hindriks R; Micheli C; Bosman CA; Oostenveld R; Lewis C; Mantini D; Fries P; Deco G
    Neuroimage; 2018 Nov; 181():347-358. PubMed ID: 29886144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Functional Network Connectivity in Schizophrenia with Magnetoencephalography and Functional Magnetic Resonance Imaging: Do Different Timescales Tell a Different Story?
    Sanfratello L; Houck JM; Calhoun VD
    Brain Connect; 2019 Apr; 9(3):251-262. PubMed ID: 30632385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining resting-state functional connectivity in first-episode schizophrenia with 7T fMRI and MEG.
    Lottman KK; Gawne TJ; Kraguljac NV; Killen JF; Reid MA; Lahti AC
    Neuroimage Clin; 2019; 24():101959. PubMed ID: 31377556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Group differences in MEG-ICA derived resting state networks: Application to major depressive disorder.
    Nugent AC; Robinson SE; Coppola R; Furey ML; Zarate CA
    Neuroimage; 2015 Sep; 118():1-12. PubMed ID: 26032890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between MEG and fMRI.
    Hall EL; Robson SE; Morris PG; Brookes MJ
    Neuroimage; 2014 Nov; 102 Pt 1():80-91. PubMed ID: 24239589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A signal-processing pipeline for magnetoencephalography resting-state networks.
    Mantini D; Della Penna S; Marzetti L; de Pasquale F; Pizzella V; Corbetta M; Romani GL
    Brain Connect; 2011; 1(1):49-59. PubMed ID: 22432954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caffeine-Induced Global Reductions in Resting-State BOLD Connectivity Reflect Widespread Decreases in MEG Connectivity.
    Tal O; Diwakar M; Wong CW; Olafsson V; Lee R; Huang MX; Liu TT
    Front Hum Neurosci; 2013; 7():63. PubMed ID: 23459778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring MEG brain fingerprints: Evaluation, pitfalls, and interpretations.
    Sareen E; Zahar S; Ville DV; Gupta A; Griffa A; Amico E
    Neuroimage; 2021 Oct; 240():118331. PubMed ID: 34237444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a complete taxonomy of resting state networks across wakefulness and sleep: an assessment of spatially distinct resting state networks using independent component analysis.
    Houldin E; Fang Z; Ray LB; Owen AM; Fogel SM
    Sleep; 2019 Mar; 42(3):. PubMed ID: 30476346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods.
    O'Neill GC; Barratt EL; Hunt BA; Tewarie PK; Brookes MJ
    Phys Med Biol; 2015 Nov; 60(21):R271-95. PubMed ID: 26447925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.