These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 21931111)
1. HLA-targeted flow cytometric sorting of blood cells allows separation of pure and viable microchimeric cell populations. Drabbels JJ; van de Keur C; Kemps BM; Mulder A; Scherjon SA; Claas FH; Eikmans M Blood; 2011 Nov; 118(19):e149-55. PubMed ID: 21931111 [TBL] [Abstract][Full Text] [Related]
2. HLA-targeted cell sorting of microchimeric cells opens the way to phenotypical and functional characterization. Eikmans M; Claas FH Chimerism; 2011; 2(4):114-6. PubMed ID: 22509428 [TBL] [Abstract][Full Text] [Related]
4. Comparison of purity and enrichment of CD34+ cells from bone marrow, umbilical cord and peripheral blood (primed for apheresis) using five separation systems. de Wynter EA; Coutinho LH; Pei X; Marsh JC; Hows J; Luft T; Testa NG Stem Cells; 1995 Sep; 13(5):524-32. PubMed ID: 8528102 [TBL] [Abstract][Full Text] [Related]
5. Enrichment of fetal cells from maternal blood by high gradient magnetic cell sorting (double MACS) for PCR-based genetic analysis. Büsch J; Huber P; Pflüger E; Miltenyi S; Holtz J; Radbruch A Prenat Diagn; 1994 Dec; 14(12):1129-40. PubMed ID: 7534927 [TBL] [Abstract][Full Text] [Related]
6. Maternal microchimerism in healthy adults in lymphocytes, monocyte/macrophages and NK cells. Loubière LS; Lambert NC; Flinn LJ; Erickson TD; Yan Z; Guthrie KA; Vickers KT; Nelson JL Lab Invest; 2006 Nov; 86(11):1185-92. PubMed ID: 16969370 [TBL] [Abstract][Full Text] [Related]
7. Factors Predicting the Presence of Maternal Cells in Cord Blood and Associated Changes in Immune Cell Composition. Haddad ME; Karlmark KR; Donato XC; Martin GV; Bretelle F; Lesavre N; Cocallemen JF; Martin M; Picard C; Roudier J; Desbriere R; Lambert NC Front Immunol; 2021; 12():651399. PubMed ID: 33968049 [TBL] [Abstract][Full Text] [Related]
8. Intact fetal cell isolation from maternal blood: improved isolation using a simple whole blood progenitor cell enrichment approach (RosetteSep). Bischoff FZ; Marquéz-Do DA; Martinez DI; Dang D; Horne C; Lewis D; Simpson JL Clin Genet; 2003 Jun; 63(6):483-9. PubMed ID: 12786755 [TBL] [Abstract][Full Text] [Related]
9. Surface antigen expression on CD34+ cord blood cells: comparative analysis by flow cytometry and limiting dilution (LD) RT-PCR of chymopapain-treated or untreated cells. Ziegler BL; Thoma SJ; Lamping CP; Valtieri M; Müller R; Samoggia P; Bühring HJ; Peschle C; Fliedner TM Cytometry; 1996 Sep; 25(1):46-57. PubMed ID: 8875054 [TBL] [Abstract][Full Text] [Related]
10. Recipient-derived cells after cord blood transplantation: dynamics elucidated by multicolor FACS, reflecting graft failure and relapse. Watanabe N; Takahashi S; Ishige M; Ishii Y; Ooi J; Tomonari A; Tsukada N; Konuma T; Kato S; Sato A; Tojo A; Nakauchi H Biol Blood Marrow Transplant; 2008 Jun; 14(6):693-701. PubMed ID: 18489995 [TBL] [Abstract][Full Text] [Related]
11. Fetal cell isolation from maternal blood cultures by flow cytometric hemoglobin profiles. Results of a preliminary clinical trial. Bohmer RM; Stroh HP; Johnson KL; LeShane ES; Bianchi DW Fetal Diagn Ther; 2002; 17(2):83-9. PubMed ID: 11844911 [TBL] [Abstract][Full Text] [Related]
12. The clinical utility of fetal cell sorting to determine prenatally fetal E/e or e/e Rh genotype from peripheral maternal blood. Geifman-Holtzman O; Makhlouf F; Kaufman L; Gonchoroff NJ; Holtzman EJ Am J Obstet Gynecol; 2000 Aug; 183(2):462-8. PubMed ID: 10942488 [TBL] [Abstract][Full Text] [Related]
13. Flow cytometry with anti HLA-antibodies: a simple but highly sensitive method for monitoring chimerism and minimal residual disease after HLA-mismatched stem cell transplantation. Schumm M; Feuchtinger T; Pfeiffer M; Hoelle W; Bethge W; Ebinger M; Kuci S; Handgretinger R; Lang P Bone Marrow Transplant; 2007 Jun; 39(12):767-73. PubMed ID: 17438586 [TBL] [Abstract][Full Text] [Related]
14. Establishing a Population-Based HLA-Antibody Panel for Flow Cytometric Monitoring of Chimerism in HLA-Haploidentical Stem Cell Transplantation. Choe W; Hwang MA; Jang S; Park CJ; Chi HS; Im HJ Ann Clin Lab Sci; 2016; 46(2):161-7. PubMed ID: 27098622 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional control of HLA-A,B,C antigen in human placental cytotrophoblast isolated using trophoblast- and HLA-specific monoclonal antibodies and the fluorescence-activated cell sorter. Kawata M; Parnes JR; Herzenberg LA J Exp Med; 1984 Sep; 160(3):633-51. PubMed ID: 6206184 [TBL] [Abstract][Full Text] [Related]
16. Advancing the detection of maternal haematopoietic microchimeric cells in fetal immune organs in mice by flow cytometry. Solano ME; Thiele K; Stelzer IA; Mittrücker HW; Arck PC Chimerism; 2014; 5(3-4):99-102. PubMed ID: 25483743 [TBL] [Abstract][Full Text] [Related]
17. Analysis of gene expression in small numbers of purified hemopoietic progenitor cells by RT-PCR. Ziegler BL; Lamping CP; Thoma SJ; Fliedner TM Stem Cells; 1995 May; 13 Suppl 1():106-16. PubMed ID: 7488936 [TBL] [Abstract][Full Text] [Related]
18. Rapid flow cytometric identification of putative CD14- and CD64- dendritic cells in whole blood. Macey MG; McCarthy DA; Vogiatzi D; Brown KA; Newland AC Cytometry; 1998 Mar; 31(3):199-207. PubMed ID: 9515719 [TBL] [Abstract][Full Text] [Related]
19. Microchimerism in the rheumatoid nodules of patients with rheumatoid arthritis. Chan WF; Atkins CJ; Naysmith D; van der Westhuizen N; Woo J; Nelson JL Arthritis Rheum; 2012 Feb; 64(2):380-8. PubMed ID: 21953057 [TBL] [Abstract][Full Text] [Related]
20. Validation of human monoclonal HLA Class I antibodies to evaluate the kinetics of donor chimerism in different cell subsets after double-cord-blood transplantation in the NOD/SCID model. van Hensbergen Y; Mulder A; Cornelissen JJ; Brand A Transfusion; 2013 Jan; 53(1):104-14. PubMed ID: 22554346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]