These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 21931404)

  • 21. Plasmon delocalization onset in finite sized nanostructures.
    Farhang A; Martin OJ
    Opt Express; 2011 Jun; 19(12):11387-96. PubMed ID: 21716369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic forces and localized resonances in electron transfer through quantum rings.
    Poniedziałek MR; Szafran B
    J Phys Condens Matter; 2010 Nov; 22(46):465801. PubMed ID: 21403375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmonic resonances in optomagnetic metamaterials based on double dot arrays.
    Kravets VG; Schedin F; Taylor S; Viita D; Grigorenko AN
    Opt Express; 2010 May; 18(10):9780-90. PubMed ID: 20588828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spin interference and the Fano effect in electron transport through a mesoscopic ring side-coupled with a quantum dot.
    Ding GH; Dong B
    J Phys Condens Matter; 2010 Apr; 22(13):135301. PubMed ID: 21389513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating.
    Yeh WH; Kleingartner J; Hillier AC
    Anal Chem; 2010 Jun; 82(12):4988-93. PubMed ID: 20481520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum entangling gates using the strong coupling between two optical emitters and nanowire surface plasmons.
    Yang J; Lin GW; Niu YP; Gong SQ
    Opt Express; 2013 Jul; 21(13):15618-26. PubMed ID: 23842347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Semiclassical approach to plasmon-electron coupling and Landau damping of surface plasmons.
    Gao Y; Yuan Z; Gao S
    J Chem Phys; 2011 Apr; 134(13):134702. PubMed ID: 21476764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.
    Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ
    ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy.
    Passian A; Wig A; Lereu AL; Evans PG; Meriaudeau F; Thundat T; Ferrell TL
    Ultramicroscopy; 2004 Aug; 100(3-4):429-36. PubMed ID: 15231335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings.
    Singh BK; Hillier AC
    Anal Chem; 2008 May; 80(10):3803-10. PubMed ID: 18399660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Demonstration of an elliptical plasmonic lens illuminated with radially-like polarized field.
    Lerman GM; Yanai A; Ben-Yosef N; Levy U
    Opt Express; 2010 May; 18(10):10871-7. PubMed ID: 20588942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear nanopolaritonics: finite-difference time-domain Maxwell-Schrödinger simulation of molecule-assisted plasmon transfer.
    Lopata K; Neuhauser D
    J Chem Phys; 2009 Jul; 131(1):014701. PubMed ID: 19586111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near-field optical imaging of plasmon modes in gold nanorods.
    Imura K; Nagahara T; Okamoto H
    J Chem Phys; 2005 Apr; 122(15):154701. PubMed ID: 15945650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Huygens-Fresnel principle for surface plasmons.
    Teperik TV; Archambault A; Marquier F; Greffet JJ
    Opt Express; 2009 Sep; 17(20):17483-90. PubMed ID: 19907532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum-dot-induced transparency in a nanoscale plasmonic resonator.
    Wu X; Gray SK; Pelton M
    Opt Express; 2010 Nov; 18(23):23633-45. PubMed ID: 21164708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dark and bright localized surface plasmons in nanocrosses.
    Verellen N; Van Dorpe P; Vercruysse D; Vandenbosch GA; Moshchalkov VV
    Opt Express; 2011 Jun; 19(12):11034-51. PubMed ID: 21716332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies.
    Chu Y; Banaee MG; Crozier KB
    ACS Nano; 2010 May; 4(5):2804-10. PubMed ID: 20429521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations.
    Kvasnicka P; Homola J
    Biointerphases; 2008 Sep; 3(3):FD4-11. PubMed ID: 20408699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A perspective on bioconjugated nanoparticles and quantum dots.
    Huo Q
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):1-10. PubMed ID: 17544637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of Fano lineshape in extraordinary optical transmission.
    Lee SC; Brueck SRJ
    Opt Lett; 2022 Apr; 47(8):2020-2023. PubMed ID: 35427326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.