These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 21931423)
1. Controlling ghost traps in holographic optical tweezers. Hesseling C; Woerdemann M; Hermerschmidt A; Denz C Opt Lett; 2011 Sep; 36(18):3657-9. PubMed ID: 21931423 [TBL] [Abstract][Full Text] [Related]
2. Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change. Persson M; Engström D; Frank A; Backsten J; Bengtsson J; Goksör M Opt Express; 2010 May; 18(11):11250-63. PubMed ID: 20588985 [TBL] [Abstract][Full Text] [Related]
3. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers. Farré A; van der Horst A; Blab GA; Downing BP; Forde NR J Biophotonics; 2010 Apr; 3(4):224-33. PubMed ID: 20151444 [TBL] [Abstract][Full Text] [Related]
4. Positional stability of holographic optical traps. Farré A; Shayegan M; López-Quesada C; Blab GA; Montes-Usategui M; Forde NR; Martín-Badosa E Opt Express; 2011 Oct; 19(22):21370-84. PubMed ID: 22108987 [TBL] [Abstract][Full Text] [Related]
5. Adding functionalities to precomputed holograms with random mask multiplexing in holographic optical tweezers. Mas J; Roth MS; Martín-Badosa E; Montes-Usategui M Appl Opt; 2011 Apr; 50(10):1417-24. PubMed ID: 21460909 [TBL] [Abstract][Full Text] [Related]
6. Fast generation of holographic optical tweezers by random mask encoding of Fourier components. Montes-Usategui M; Pleguezuelos E; Andilla J; Martín-Badosa E Opt Express; 2006 Mar; 14(6):2101-7. PubMed ID: 19503542 [TBL] [Abstract][Full Text] [Related]
7. Assembly of 3-dimensional structures using programmable holographic optical tweezers. Sinclair G; Jordan P; Courtial J; Padgett M; Cooper J; Laczik Z Opt Express; 2004 Nov; 12(22):5475-80. PubMed ID: 19484108 [TBL] [Abstract][Full Text] [Related]
8. Implementation of phase-shift patterns using a holographic projection system with phase-only diffractive optical elements. Hsu WF; Chen YW; Su YH Appl Opt; 2011 Jul; 50(20):3646-52. PubMed ID: 21743577 [TBL] [Abstract][Full Text] [Related]
9. Increasing trap stiffness with position clamping in holographic optical tweezers. Preece D; Bowman R; Linnenberger A; Gibson G; Serati S; Padgett M Opt Express; 2009 Dec; 17(25):22718-25. PubMed ID: 20052197 [TBL] [Abstract][Full Text] [Related]
10. Holographic Optical Tweezers That Use an Improved Gerchberg-Saxton Algorithm. Zhou Z; Hu G; Zhao S; Li H; Zhang F Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241637 [TBL] [Abstract][Full Text] [Related]
11. Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection. Zhang H; Xie J; Liu J; Wang Y Appl Opt; 2009 Oct; 48(30):5834-41. PubMed ID: 19844322 [TBL] [Abstract][Full Text] [Related]
12. Robustness of holographic optical traps against phase scaling errors. Lee SH; Grier D Opt Express; 2005 Sep; 13(19):7458-65. PubMed ID: 19498771 [TBL] [Abstract][Full Text] [Related]
13. Computer Generated Holography with Intensity-Graded Patterns. Conti R; Assayag O; de Sars V; Guillon M; Emiliani V Front Cell Neurosci; 2016; 10():236. PubMed ID: 27799896 [TBL] [Abstract][Full Text] [Related]
14. Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping. Sinclair G; Leach J; Jordan P; Gibson G; Yao E; Laczik Z; Padgett M; Courtial J Opt Express; 2004 Apr; 12(8):1665-70. PubMed ID: 19474992 [TBL] [Abstract][Full Text] [Related]
15. Holographic memory optical system based on computer-generated Fourier holograms. Betin AY; Bobrinev VI; Odinokov SB; Evtikhiev NN; Starikov RS; Starikov SN; Zlokazov EY Appl Opt; 2013 Nov; 52(33):8142-5. PubMed ID: 24513770 [TBL] [Abstract][Full Text] [Related]
16. Combined holographic-mechanical optical tweezers: construction, optimization, and calibration. Hanes RD; Jenkins MC; Egelhaaf SU Rev Sci Instrum; 2009 Aug; 80(8):083703. PubMed ID: 19725658 [TBL] [Abstract][Full Text] [Related]
17. Rapidly and accurately shaping the intensity and phase of light for optical nano-manipulation. Tang X; Nan F; Yan Z Nanoscale Adv; 2020 Jun; 2(6):2540-2547. PubMed ID: 36133389 [TBL] [Abstract][Full Text] [Related]
18. Particle tracking stereomicroscopy in optical tweezers: control of trap shape. Bowman R; Gibson G; Padgett M Opt Express; 2010 May; 18(11):11785-90. PubMed ID: 20589039 [TBL] [Abstract][Full Text] [Related]
19. Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation. Woerdemann M; Berghoff K; Denz C Opt Express; 2010 Oct; 18(21):22348-57. PubMed ID: 20941135 [TBL] [Abstract][Full Text] [Related]
20. Second-harmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining. Zhu B; Liu H; Liu Y; Yan X; Chen Y; Chen X Opt Lett; 2020 Aug; 45(15):4132-4135. PubMed ID: 32735241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]