These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The mechanism of agrin-induced acetylcholine receptor aggregation. Wallace BG Philos Trans R Soc Lond B Biol Sci; 1991 Mar; 331(1261):273-80. PubMed ID: 1677470 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and transport of agrin-like molecules in motor neurons. Magill-Solc C; McMahan UJ J Exp Biol; 1990 Oct; 153():1-10. PubMed ID: 2177765 [TBL] [Abstract][Full Text] [Related]
5. Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo. Cohen I; Rimer M; Lømo T; McMahan UJ Mol Cell Neurosci; 1997; 9(4):237-53. PubMed ID: 9268503 [TBL] [Abstract][Full Text] [Related]
6. Agrin is required for posterior development and motor axon outgrowth and branching in embryonic zebrafish. Kim MJ; Liu IH; Song Y; Lee JA; Halfter W; Balice-Gordon RJ; Linney E; Cole GJ Glycobiology; 2007 Feb; 17(2):231-47. PubMed ID: 17110391 [TBL] [Abstract][Full Text] [Related]
7. The zebrafish ennui behavioral mutation disrupts acetylcholine receptor localization and motor axon stability. Saint-Amant L; Sprague SM; Hirata H; Li Q; Cui WW; Zhou W; Poudou O; Hume RI; Kuwada JY Dev Neurobiol; 2008 Jan; 68(1):45-61. PubMed ID: 17918238 [TBL] [Abstract][Full Text] [Related]
8. Rodent nerve-muscle cell culture system for studies of neuromuscular junction development: refinements and applications. Daniels MP; Lowe BT; Shah S; Ma J; Samuelsson SJ; Lugo B; Parakh T; Uhm CS Microsc Res Tech; 2000 Apr; 49(1):26-37. PubMed ID: 10757876 [TBL] [Abstract][Full Text] [Related]
9. Regulation of the size and distribution of agrin-induced postsynaptic-like apparatus in adult skeletal muscle by electrical muscle activity. Mathiesen I; Rimer M; Ashtari O; Cohen I; McMahan UJ; Lømo T Mol Cell Neurosci; 1999 Mar; 13(3):207-17. PubMed ID: 10328882 [TBL] [Abstract][Full Text] [Related]
10. Identification of agrin in electric organ extracts and localization of agrin-like molecules in muscle and central nervous system. Smith MA; Yao YM; Reist NE; Magill C; Wallace BG; McMahan UJ J Exp Biol; 1987 Sep; 132():223-30. PubMed ID: 2828510 [TBL] [Abstract][Full Text] [Related]
11. Aggregates of acetylcholine receptors are not observed under anti-agrin staining schwann cell processes at the frog neuromuscular junction. Werle MJ; Jones MA; Stanco AM J Neurobiol; 1999 Jul; 40(1):45-54. PubMed ID: 10398070 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of agrin isoforms in Xenopus embryos alters the distribution of synaptic acetylcholine receptors during development of the neuromuscular junction. Godfrey EW; Roe J; Heathcote RD Dev Biol; 1999 Jan; 205(1):22-32. PubMed ID: 9882495 [TBL] [Abstract][Full Text] [Related]
14. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Lin W; Burgess RW; Dominguez B; Pfaff SL; Sanes JR; Lee KF Nature; 2001 Apr; 410(6832):1057-64. PubMed ID: 11323662 [TBL] [Abstract][Full Text] [Related]
15. Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain. Hammond R; Vivancos V; Naeem A; Chilton J; Mambetisaeva E; Andrews W; Sundaresan V; Guthrie S Development; 2005 Oct; 132(20):4483-95. PubMed ID: 16162649 [TBL] [Abstract][Full Text] [Related]
16. Agrin inhibits neurite outgrowth but promotes attachment of embryonic motor and sensory neurons. Chang D; Woo JS; Campanelli J; Scheller RH; Ignatius MJ Dev Biol; 1997 Jan; 181(1):21-35. PubMed ID: 9015262 [TBL] [Abstract][Full Text] [Related]