BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 21931483)

  • 1. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots.
    Generalov R; Kavaliauskiene S; Westrøm S; Chen W; Kristensen S; Juzenas P
    Int J Nanomedicine; 2011; 6():1875-88. PubMed ID: 21931483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of cell internalization and photostability of red and green emitter quantum dots upon entrapment in novel cationic nanoliposomes.
    Samadikhah HR; Nikkhah M; Hosseinkhani S
    Luminescence; 2017 Jun; 32(4):517-528. PubMed ID: 27767252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on intracellular delivery of liposome encapsulated quantum dots using advanced fluorescence microscopy.
    Bruun K; Hille C
    Sci Rep; 2019 Jul; 9(1):10504. PubMed ID: 31324829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular uptake and photosensitizing properties of quantum dot-chlorin e6 complex: in vitro study.
    Steponkiene S; Valanciunaite J; Skripka A; Rotomskis R
    J Biomed Nanotechnol; 2014 Apr; 10(4):679-86. PubMed ID: 24734520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy.
    Samia AC; Dayal S; Burda C
    Photochem Photobiol; 2006; 82(3):617-25. PubMed ID: 16475871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy.
    Yaghini E; Seifalian AM; MacRobert AJ
    Nanomedicine (Lond); 2009 Apr; 4(3):353-63. PubMed ID: 19331542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging.
    Kuo WS; Chen HH; Chen SY; Chang CY; Chen PC; Hou YI; Shao YT; Kao HF; Lilian Hsu CL; Chen YC; Chen SJ; Wu SR; Wang JY
    Biomaterials; 2017 Mar; 120():185-194. PubMed ID: 28063357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of porphyrins with CdTe quantum dots.
    Zhang X; Liu Z; Ma L; Hossu M; Chen W
    Nanotechnology; 2011 May; 22(19):195501. PubMed ID: 21430318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photophysical characterization of Hypericin-loaded in micellar, liposomal and copolymer-lipid nanostructures based F127 and DPPC liposomes.
    Amanda Pedroso de Morais F; Sonchini Gonçalves R; Souza Campanholi K; Martins de França B; Augusto Capeloto O; Lazarin-Bidoia D; Bento Balbinot R; Vataru Nakamura C; Carlos Malacarne L; Caetano W; Hioka N
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119173. PubMed ID: 33316657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy.
    Jovanović SP; Syrgiannis Z; Marković ZM; Bonasera A; Kepić DP; Budimir MD; Milivojević DD; Spasojević VD; Dramićanin MD; Pavlović VB; Todorović Marković BM
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25865-74. PubMed ID: 26540316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Black Phosphorus Quantum Dots with Renal Clearance Property for Efficient Photodynamic Therapy.
    Guo T; Wu Y; Lin Y; Xu X; Lian H; Huang G; Liu JZ; Wu X; Yang HH
    Small; 2018 Jan; 14(4):. PubMed ID: 29171713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging.
    Wen CJ; Zhang LW; Al-Suwayeh SA; Yen TC; Fang JY
    Int J Nanomedicine; 2012; 7():1599-611. PubMed ID: 22619515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon quantum dots fluorescence quenching for potassium optode construction.
    Rahimi M; Mahani M; Hassani Z
    Luminescence; 2019 Jun; 34(4):402-406. PubMed ID: 31033128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodynamic Graphene Quantum Dot: Reduction Condition Regulated Photoactivity and Size Dependent Efficacy.
    Du D; Wang K; Wen Y; Li Y; Li YY
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3287-94. PubMed ID: 26761130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells.
    He SJ; Cao J; Li YS; Yang JC; Zhou M; Qu CY; Zhang Y; Shen F; Chen Y; Li MM; Xu LM
    World J Gastroenterol; 2016 Jun; 22(21):5012-22. PubMed ID: 27275093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photophysical behaviour and photodynamic activity of zinc phthalocyanines associated to liposomes.
    Garcia AM; Alarcon E; Muñoz M; Scaiano JC; Edwards AM; Lissi E
    Photochem Photobiol Sci; 2011 Apr; 10(4):507-14. PubMed ID: 21152616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification by transferrin increases the efficiency of delivery and the photodynamic effect of the quantum dot-phthalocyanine complex on A431 cells.
    Gvozdev DA; Ramonova АА; Slonimskiy YB; Maksimov ЕG; Moisenovich ММ; Paschenko VZ
    Arch Biochem Biophys; 2019 Dec; 678():108192. PubMed ID: 31733214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles.
    Schroeder JE; Shweky I; Shmeeda H; Banin U; Gabizon A
    J Control Release; 2007 Dec; 124(1-2):28-34. PubMed ID: 17928088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites.
    Shi L; Hernandez B; Selke M
    J Am Chem Soc; 2006 May; 128(19):6278-9. PubMed ID: 16683767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles.
    Hamada M; Nakanishi S; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2010 Aug; 4(8):4445-54. PubMed ID: 20731430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.