BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 21931845)

  • 1. Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine.
    Ueno K; Matsumoto Y; Uno J; Sasamoto K; Sekimizu K; Kinjo Y; Chibana H
    PLoS One; 2011; 6(9):e24759. PubMed ID: 21931845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans.
    Yadav AK; Desai PR; Rai MN; Kaur R; Ganesan K; Bachhawat AK
    Microbiology (Reading); 2011 Feb; 157(Pt 2):484-495. PubMed ID: 20966090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One small step for a yeast--microevolution within macrophages renders Candida glabrata hypervirulent due to a single point mutation.
    Brunke S; Seider K; Fischer D; Jacobsen ID; Kasper L; Jablonowski N; Wartenberg A; Bader O; Enache-Angoulvant A; Schaller M; d'Enfert C; Hube B
    PLoS Pathog; 2014 Oct; 10(10):e1004478. PubMed ID: 25356907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strategy to prevent the occurrence of Lactobacillus strains using lactate-tolerant yeast Candida glabrata in bioethanol production.
    Watanabe I; Nakamura T; Shima J
    J Ind Microbiol Biotechnol; 2008 Oct; 35(10):1117-22. PubMed ID: 18597130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new regulator in the crossroads of oxidative stress resistance and virulence in
    Pais P; Vagueiro S; Mil-Homens D; Pimenta AI; Viana R; Okamoto M; Chibana H; Fialho AM; Teixeira MC
    Virulence; 2020 Dec; 11(1):1522-1538. PubMed ID: 33135521
    [No Abstract]   [Full Text] [Related]  

  • 6. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata.
    Ferrari S; Sanguinetti M; Torelli R; Posteraro B; Sanglard D
    PLoS One; 2011 Mar; 6(3):e17589. PubMed ID: 21408004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages.
    Seider K; Gerwien F; Kasper L; Allert S; Brunke S; Jablonowski N; Schwarzmüller T; Barz D; Rupp S; Kuchler K; Hube B
    Eukaryot Cell; 2014 Jan; 13(1):170-83. PubMed ID: 24363366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida glabrata Ste11 is involved in adaptation to hypertonic stress, maintenance of wild-type levels of filamentation and plays a role in virulence.
    Calcagno AM; Bignell E; Rogers TR; Jones MD; Mühlschlegel FA; Haynes K
    Med Mycol; 2005 Jun; 43(4):355-64. PubMed ID: 16110782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p.
    Cuéllar-Cruz M; Briones-Martin-del-Campo M; Cañas-Villamar I; Montalvo-Arredondo J; Riego-Ruiz L; Castaño I; De Las Peñas A
    Eukaryot Cell; 2008 May; 7(5):814-25. PubMed ID: 18375620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The secreted acid trehalase encoded by the CgATH1 gene is involved in Candida glabrata virulence.
    Lopes RG; Muñoz JE; Barros LM; Alves-Jr SL; Taborda CP; Stambuk BU
    Mem Inst Oswaldo Cruz; 2020; 115():e200401. PubMed ID: 33146242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation.
    Calcagno AM; Bignell E; Warn P; Jones MD; Denning DW; Mühlschlegel FA; Rogers TR; Haynes K
    Mol Microbiol; 2003 Nov; 50(4):1309-18. PubMed ID: 14622417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular pH homeostasis in Candida glabrata in infection-associated conditions.
    Ullah A; Lopes MI; Brul S; Smits GJ
    Microbiology (Reading); 2013 Apr; 159(Pt 4):803-813. PubMed ID: 23378571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glycosylphosphatidylinositol-linked aspartyl protease Yps1 is transcriptionally regulated by the calcineurin-Crz1 and Slt2 MAPK pathways in Candida glabrata.
    Miyazaki T; Izumikawa K; Yamauchi S; Inamine T; Nagayoshi Y; Saijo T; Seki M; Kakeya H; Yamamoto Y; Yanagihara K; Miyazaki Y; Yasuoka A; Kohno S
    FEMS Yeast Res; 2011 Aug; 11(5):449-56. PubMed ID: 21501380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential virulence of Candida glabrata glycosylation mutants.
    West L; Lowman DW; Mora-Montes HM; Grubb S; Murdoch C; Thornhill MH; Gow NA; Williams D; Haynes K
    J Biol Chem; 2013 Jul; 288(30):22006-18. PubMed ID: 23720756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of CgTpo4 in Polyamine and Antimicrobial Peptide Resistance: Determining Virulence in
    Cavalheiro M; Romão D; Santos R; Mil-Homens D; Pais P; Costa C; Galocha M; Pereira D; Takahashi-Nakaguchi A; Chibana H; Fialho AM; Teixeira MC
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33573089
    [No Abstract]   [Full Text] [Related]  

  • 16. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae.
    Chew SY; Chee WJY; Than LTL
    J Biomed Sci; 2019 Jul; 26(1):52. PubMed ID: 31301737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuolar proton-translocating ATPase is required for antifungal resistance and virulence of Candida glabrata.
    Minematsu A; Miyazaki T; Shimamura S; Nishikawa H; Nakayama H; Takazono T; Saijo T; Yamamoto K; Imamura Y; Yanagihara K; Kohno S; Mukae H; Izumikawa K
    PLoS One; 2019; 14(1):e0210883. PubMed ID: 30673768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the essentiality of ROM2 genes in the pathogenic yeasts Candida glabrata and Candida albicans using temperature-sensitive mutants.
    Kanno T; Takekawa D; Miyakawa Y
    J Appl Microbiol; 2015 Apr; 118(4):851-63. PubMed ID: 25604069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
    Gerwien F; Safyan A; Wisgott S; Hille F; Kaemmer P; Linde J; Brunke S; Kasper L; Hube B
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous expression of the virulence-related adhesin Epa1 between individual cells and strains of the pathogen Candida glabrata.
    Halliwell SC; Smith MC; Muston P; Holland SL; Avery SV
    Eukaryot Cell; 2012 Feb; 11(2):141-50. PubMed ID: 22140233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.