BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21931882)

  • 21. A novel preparation of small TiO₂ nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature.
    Fan K; Gong C; Peng T; Chen J; Xia J
    Nanoscale; 2011 Sep; 3(9):3900-6. PubMed ID: 21845275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell.
    Kim J; Kim J; Lee M
    Nanotechnology; 2010 Aug; 21(34):345203. PubMed ID: 20671364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scalable low-cost SnS(2) nanosheets as counter electrode building blocks for dye-sensitized solar cells.
    Bai Y; Zong X; Yu H; Chen ZG; Wang L
    Chemistry; 2014 Jul; 20(28):8670-6. PubMed ID: 24924927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dye-sensitized solar cell counter electrodes based on carbon nanotubes.
    Hwang S; Batmunkh M; Nine MJ; Chung H; Jeong H
    Chemphyschem; 2015 Jan; 16(1):53-65. PubMed ID: 25367083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wire-supported CdSe nanowire array photoelectrochemical solar cells.
    Zhang L; Shi E; Li Z; Li P; Jia Y; Ji C; Wei J; Wang K; Zhu H; Wu D; Cao A
    Phys Chem Chem Phys; 2012 Mar; 14(10):3583-8. PubMed ID: 22311153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays.
    Liu J; Kuo YT; Klabunde KJ; Rochford C; Wu J; Li J
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1645-9. PubMed ID: 20355778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dye-sensitized solar cells based on multiwalled carbon nanotube-titania/titania bilayer structure photoelectrode.
    Lin WJ; Hsu CT; Tsai YC
    J Colloid Interface Sci; 2011 Jun; 358(2):562-6. PubMed ID: 21463866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes.
    Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S
    Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction of Highly Catalytic Porous TiOPC Nanocomposite Counter Electrodes for Dye-Sensitized Solar Cells.
    Chen M; Shao LL; Xia Y; Huang ZY; Xu DL; Zhang ZW; Chang ZX; Pei WJ
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26030-26040. PubMed ID: 27617975
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly efficient monolithic dye-sensitized solar cells.
    Kwon J; Park NG; Lee JY; Ko MJ; Park JH
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2070-4. PubMed ID: 23432389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible, transferable, and thermal-durable dye-sensitized solar cell photoanode consisting of TiO₂ nanoparticles and electrospun TiO₂/SiO₂ nanofibers.
    Wang X; Xi M; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15925-32. PubMed ID: 25162500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Different hierarchical nanostructured carbons as counter electrodes for CdS quantum dot solar cells.
    Paul GS; Kim JH; Kim MS; Do K; Ko J; Yu JS
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):375-81. PubMed ID: 22132833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells.
    Guo W; Xu C; Wang X; Wang S; Pan C; Lin C; Wang ZL
    J Am Chem Soc; 2012 Mar; 134(9):4437-41. PubMed ID: 22300521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film.
    Dai G; Zhao L; Li J; Wan L; Hu F; Xu Z; Dong B; Lu H; Wang S; Yu J
    J Colloid Interface Sci; 2012 Jan; 365(1):46-52. PubMed ID: 21962431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inverse opal carbons for counter electrode of dye-sensitized solar cells.
    Kang DY; Lee Y; Cho CY; Moon JH
    Langmuir; 2012 May; 28(17):7033-8. PubMed ID: 22475456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure.
    Qi J; Dang X; Hammond PT; Belcher AM
    ACS Nano; 2011 Sep; 5(9):7108-16. PubMed ID: 21815674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A long-term stable Pt counter electrode modified by POM-based multilayer film for high conversion efficiency dye-sensitized solar cells.
    Guo SS; Qin C; Li YG; Lu Y; Su ZM; Chen WL; Wang EB
    Dalton Trans; 2012 Feb; 41(8):2227-30. PubMed ID: 22215026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition.
    Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP
    Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyrolytic carbon from an aromatic precursor and its application as a counter electrode in dye-sensitized solar cells.
    Hsiao CT; Lu SY; Tsai TY
    Chemistry; 2011 Jan; 17(4):1358-64. PubMed ID: 21243704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.