These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 21931890)
41. Mechanism of pyridine protonation in water clusters of increasing size. Sicilia MC; Niño A; Muñoz-Caro C J Phys Chem A; 2005 Sep; 109(37):8341-7. PubMed ID: 16834225 [TBL] [Abstract][Full Text] [Related]
42. Proton transfer in the complex H3N...HCl catalyzed by encapsulation into a C60 cage. Ma F; Li ZR; Xu HL; Li ZJ; Wu D; Li ZS; Gu FL Chemphyschem; 2009 May; 10(7):1112-6. PubMed ID: 19347919 [TBL] [Abstract][Full Text] [Related]
43. Excited-state proton transfer through water bridges and structure of hydrogen-bonded complexes in 1H-pyrrolo[3,2-h]quinoline: adiabatic time-dependent density functional theory study. Kyrychenko A; Waluk J J Phys Chem A; 2006 Nov; 110(43):11958-67. PubMed ID: 17064184 [TBL] [Abstract][Full Text] [Related]
44. Excited-state proton transfer in 7-hydroxy-4-methylcoumarin along a hydrogen-bonded water wire. Georgieva I; Trendafilova N; Aquino AJ; Lischka H J Phys Chem A; 2007 Jan; 111(1):127-35. PubMed ID: 17201395 [TBL] [Abstract][Full Text] [Related]
45. Structure of protonated carbon dioxide clusters: infrared photodissociation spectroscopy and ab initio calculations. Douberly GE; Ricks AM; Ticknor BW; Duncan MA J Phys Chem A; 2008 Feb; 112(5):950-9. PubMed ID: 18193850 [TBL] [Abstract][Full Text] [Related]
46. Computational study on the characteristics of the interaction in naphthalene...(H2X)n=1,2 (X = O,S) clusters. Cabaleiro-Lago EM; Rodríguez-Otero J; Peña-Gallego A J Phys Chem A; 2008 Jul; 112(28):6344-50. PubMed ID: 18570360 [TBL] [Abstract][Full Text] [Related]
47. Revisit the landscape of protonated water clusters H Shi R; Li K; Su Y; Tang L; Huang X; Sai L; Zhao J J Chem Phys; 2018 May; 148(17):174305. PubMed ID: 29739201 [TBL] [Abstract][Full Text] [Related]
48. Characteristics of antiaromatic ring pi multi-hydrogen bonds in (H2O)n-C4H4 (n = 1, 2) complexes. Jing YQ; Li ZR; Wu D; Li Y; Wang BQ; Sun CC J Phys Chem A; 2006 Jun; 110(23):7470-6. PubMed ID: 16759137 [TBL] [Abstract][Full Text] [Related]
49. Blue-shifted A-H stretching modes and cooperative hydrogen bonding. 1. Complexes of substituted formaldehyde with cyclic hydrogen fluoride and water clusters. Karpfen A; Kryachko ES J Phys Chem A; 2007 Aug; 111(33):8177-87. PubMed ID: 17661452 [TBL] [Abstract][Full Text] [Related]
50. Quantum vibrational analysis and infrared spectra of microhydrated sodium ions using an ab initio potential. Kamarchik E; Wang Y; Bowman JM J Chem Phys; 2011 Mar; 134(11):114311. PubMed ID: 21428623 [TBL] [Abstract][Full Text] [Related]
51. Infrared spectroscopy of small protonated water clusters, H(+)(H2O)n (n = 2-5): isomers, argon tagging, and deuteration. Douberly GE; Walters RS; Cui J; Jordan KD; Duncan MA J Phys Chem A; 2010 Apr; 114(13):4570-9. PubMed ID: 20232806 [TBL] [Abstract][Full Text] [Related]
52. Quantum chemistry study of H+(H2O)8: a global search for its isomers by the scaled hypersphere search method, and its thermal behavior. Luo Y; Maeda S; Ohno K J Phys Chem A; 2007 Oct; 111(42):10732-7. PubMed ID: 17887737 [TBL] [Abstract][Full Text] [Related]
53. Hydrogen peroxide clusters: the role of open book motif in cage and helical structures. Elango M; Parthasarathi R; Subramanian V; Ramachandran CN; Sathyamurthy N J Phys Chem A; 2006 May; 110(19):6294-300. PubMed ID: 16686465 [TBL] [Abstract][Full Text] [Related]
54. A cryosolution infrared and ab initio study of the van der Waals complexes of cyclopentene with hydrogen chloride and boron trifluoride. Herrebout WA; Gatin A; Everaert GP; Fishman AI; van der Veken BJ Spectrochim Acta A Mol Biomol Spectrosc; 2005 May; 61(7):1431-44. PubMed ID: 15820876 [TBL] [Abstract][Full Text] [Related]
55. Ab initio studies on the mechanism of the size-dependent hydrogen-loss reaction in Mg+(H2O)n. Siu CK; Liu ZF Chemistry; 2002 Jul; 8(14):3177-86. PubMed ID: 12203347 [TBL] [Abstract][Full Text] [Related]
56. Structures, stability, vibration entropy and IR spectra of hydrated calcium ion clusters [Ca(H(2)O)(n)](2+) (n = 1-20, 27): a systematic investigation by density functional theory. Lei XL; Pan BC J Phys Chem A; 2010 Jul; 114(28):7595-603. PubMed ID: 20586468 [TBL] [Abstract][Full Text] [Related]
57. Microhydration effects on the electronic spectra of protonated polycyclic aromatic hydrocarbons: [naphthalene-(H2O)(n = 1,2)]H+. Alata I; Broquier M; Dedonder-Lardeux C; Jouvet C; Kim M; Sohn WY; Kim SS; Kang H; Schütz M; Patzer A; Dopfer O J Chem Phys; 2011 Feb; 134(7):074307. PubMed ID: 21341844 [TBL] [Abstract][Full Text] [Related]
58. Clusters of hydrated methane sulfonic acid CH3SO3H.(H2O)n (n = 1-5): a theoretical study. Wang L J Phys Chem A; 2007 May; 111(18):3642-51. PubMed ID: 17432836 [TBL] [Abstract][Full Text] [Related]
59. Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms. Shin I; Park M; Min SK; Lee EC; Suh SB; Kim KS J Chem Phys; 2006 Dec; 125(23):234305. PubMed ID: 17190556 [TBL] [Abstract][Full Text] [Related]
60. Structure, stability, and infrared spectroscopy of (H2O)nNH4(+) clusters: a theoretical study at zero and finite temperature. Douady J; Calvo F; Spiegelman F J Chem Phys; 2008 Oct; 129(15):154305. PubMed ID: 19045191 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]