These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
378 related articles for article (PubMed ID: 21931899)
1. Combination of visible-light responsive heterogeneous and homogeneous photocatalysts for water oxidation. Fukuzumi S; Kato S; Suenobu T Phys Chem Chem Phys; 2011 Oct; 13(40):17960-3. PubMed ID: 21931899 [TBL] [Abstract][Full Text] [Related]
2. Chemical and photochemical oxidation of organic substrates by ruthenium aqua complexes with water as an oxygen source. Li F; Yu M; Jiang Y; Huang F; Li Y; Zhang B; Sun L Chem Commun (Camb); 2011 Aug; 47(31):8949-51. PubMed ID: 21738912 [TBL] [Abstract][Full Text] [Related]
3. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. Seabold JA; Choi KS J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661 [TBL] [Abstract][Full Text] [Related]
4. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes. Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058 [TBL] [Abstract][Full Text] [Related]
5. Improvement of visible light photocatalytic acetaldehyde decomposition of bismuth vanadate/silica nanocomposites by cocatalyst loading. Murakami N; Takebe N; Tsubota T; Ohno T J Hazard Mater; 2012 Apr; 211-212():83-7. PubMed ID: 22236946 [TBL] [Abstract][Full Text] [Related]
6. Flame preparation of visible-light-responsive BiVO4 oxygen evolution photocatalysts with subsequent activation via aqueous route. Kho YK; Teoh WY; Iwase A; Mädler L; Kudo A; Amal R ACS Appl Mater Interfaces; 2011 Jun; 3(6):1997-2004. PubMed ID: 21545146 [TBL] [Abstract][Full Text] [Related]
7. High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. Jiang H; Meng X; Dai H; Deng J; Liu Y; Zhang L; Zhao Z; Zhang R J Hazard Mater; 2012 May; 217-218():92-9. PubMed ID: 22464587 [TBL] [Abstract][Full Text] [Related]
8. Efficient Light-Driven Water Oxidation Catalysis by Dinuclear Ruthenium Complexes. Berardi S; Francàs L; Neudeck S; Maji S; Benet-Buchholz J; Meyer F; Llobet A ChemSusChem; 2015 Nov; 8(21):3688-96. PubMed ID: 26423045 [TBL] [Abstract][Full Text] [Related]
9. Characterization of visible-light-driven BiVO4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Zhang A; Zhang J Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(2):336-41. PubMed ID: 19321383 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation. Liu Y; Dai H; Deng J; Zhang L; Au CT Nanoscale; 2012 Apr; 4(7):2317-25. PubMed ID: 22374295 [TBL] [Abstract][Full Text] [Related]
11. A polymeric-semiconductor-metal-complex hybrid photocatalyst for visible-light CO(2) reduction. Maeda K; Sekizawa K; Ishitani O Chem Commun (Camb); 2013 Oct; 49(86):10127-9. PubMed ID: 24048317 [TBL] [Abstract][Full Text] [Related]
12. A dyad as photocatalyst for light-driven sulfide oxygenation with water as the unique oxygen atom source. Hamelin O; Guillo P; Loiseau F; Boissonnet MF; Ménage S Inorg Chem; 2011 Sep; 50(17):7952-4. PubMed ID: 21793512 [TBL] [Abstract][Full Text] [Related]
13. Preparation of Ag doped BiVO4 film and its enhanced photoelectrocatalytic (PEC) ability of phenol degradation under visible light. Zhang X; Zhang Y; Quan X; Chen S J Hazard Mater; 2009 Aug; 167(1-3):911-4. PubMed ID: 19232823 [TBL] [Abstract][Full Text] [Related]
14. Electron transfer and catalysis with high-valent metal-oxo complexes. Fukuzumi S Dalton Trans; 2015 Apr; 44(15):6696-705. PubMed ID: 25710309 [TBL] [Abstract][Full Text] [Related]
15. Efficient DNA photocleavage by [Ru(bpy)2(dppn)]2+ with visible light. Sun Y; Joyce LE; Dickson NM; Turro C Chem Commun (Camb); 2010 Apr; 46(14):2426-8. PubMed ID: 20379547 [TBL] [Abstract][Full Text] [Related]
16. Catalytic mechanism of water oxidation with single-site ruthenium-heteropolytungstate complexes. Murakami M; Hong D; Suenobu T; Yamaguchi S; Ogura T; Fukuzumi S J Am Chem Soc; 2011 Aug; 133(30):11605-13. PubMed ID: 21702460 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Xie B; Zhang H; Cai P; Qiu R; Xiong Y Chemosphere; 2006 May; 63(6):956-63. PubMed ID: 16297430 [TBL] [Abstract][Full Text] [Related]
18. Light-driven activation of the [H2O(terpy)Mn(III)-μ-(O2)-Mn(IV)(terpy)OH2] unit in a chromophore-catalyst complex. Herrero C; Quaranta A; Protti S; Leibl W; Rutherford AW; Fallahpour R; Charlot MF; Aukauloo A Chem Asian J; 2011 Jun; 6(6):1335-9. PubMed ID: 21567970 [No Abstract] [Full Text] [Related]
19. High turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru, Rh, Ru photoinitiated electron collector. Arachchige SM; Shaw R; White TA; Shenoy V; Tsui HM; Brewer KJ ChemSusChem; 2011 Apr; 4(4):514-8. PubMed ID: 21438156 [TBL] [Abstract][Full Text] [Related]
20. Construction of Sn(IV) porphyrin/trinuclear ruthenium cluster dyads linked by pyridine carboxylates: photoinduced electron transfer in the Marcus inverted region. Kojima T; Hanabusa K; Ohkubo K; Shiro M; Fukuzumi S Chemistry; 2010 Mar; 16(12):3646-55. PubMed ID: 20209522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]