BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21931972)

  • 41. Bioremediation of paper and pulp mill effluents.
    Murugesan K
    Indian J Exp Biol; 2003 Nov; 41(11):1239-48. PubMed ID: 15332490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional x-ray imaging and analysis of fungi on and in wood.
    Van den Bulcke J; Boone M; Van Acker J; Van Hoorebeke L
    Microsc Microanal; 2009 Oct; 15(5):395-402. PubMed ID: 19709462
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fungal bio-treatment of spruce wood with Trametes versicolor for pitch control: influence on extractive contents, pulping process parameters, paper quality and effluent toxicity.
    van Beek TA; Kuster B; Claassen FW; Tienvieri T; Bertaud F; Lenon G; Petit-Conil M; Sierra-Alvarez R
    Bioresour Technol; 2007 Jan; 98(2):302-11. PubMed ID: 16517156
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tolerance to wood preservatives by copper-tolerant wood-rot fungi native to south-central Chile.
    Guillén Y; Navias D; Machuca A
    Biodegradation; 2009 Feb; 20(1):135-42. PubMed ID: 18654748
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stimulating Production of Pigment-Type Secondary Metabolites from Soft Rotting Wood Decay Fungi ("Spalting" Fungi).
    Van Court RC; Robinson SC
    Adv Biochem Eng Biotechnol; 2019; 169():109-124. PubMed ID: 30891625
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of effectiveness of wood decay fungi maintained by annual subculture on agar and stored in sterile water for 18 years.
    Richter DL; Kangas LC; Smith JK; Laks PE
    Can J Microbiol; 2010 Mar; 56(3):268-71. PubMed ID: 20453914
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibition and stimulation effects in communities of wood decay fungi: exudates from colonized wood influence growth by other species.
    Heilmann-Clausen J; Boddy L
    Microb Ecol; 2005 Apr; 49(3):399-406. PubMed ID: 16003479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bolete diversity in two relict forests of the Mexican beech (Fagus grandifolia var. mexicana; Fagaceae).
    Rodríguez-Ramírez ECh; Moreno CE
    Am J Bot; 2010 May; 97(5):893-8. PubMed ID: 21622453
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics.
    Steppe K; Cnudde V; Girard C; Lemeur R; Cnudde JP; Jacobs P
    J Struct Biol; 2004 Oct; 148(1):11-21. PubMed ID: 15363784
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of cross-reactive carbohydrate determinants on wood dust sensitization.
    Kespohl S; Schlünssen V; Jacobsen G; Schaumburg I; Maryska S; Meurer U; Brüning T; Sigsgaard T; Raulf-Heimsoth M
    Clin Exp Allergy; 2010 Jul; 40(7):1099-106. PubMed ID: 20455900
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The presence of amino acids affects inorganic N uptake in non-mycorrhizal seedlings of European beech (Fagus sylvatica).
    Stoelken G; Simon J; Ehlting B; Rennenberg H
    Tree Physiol; 2010 Sep; 30(9):1118-28. PubMed ID: 20595637
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fungi Associated With Woody Tissues of European Beech and Their Impact on Tree Health.
    Langer GJ; Bußkamp J
    Front Microbiol; 2021; 12():702467. PubMed ID: 34512579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mycorrhizosphere responsiveness to atmospheric ozone and inoculation with Phytophthora citricola in a phytotron experiment with spruce/beech mixed cultures.
    Pritsch K; Luedemann G; Matyssek R; Hartmann A; Schloter M; Scherb H; Grams TE
    Plant Biol (Stuttg); 2005 Nov; 7(6):718-27. PubMed ID: 16388476
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetic behavior of liquefaction of Japanese beech in subcritical phenol.
    Mishra G; Saka S
    Bioresour Technol; 2011 Dec; 102(23):10946-50. PubMed ID: 21978623
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fourier transform infrared microscopy and imaging: detection of fungi in wood.
    Naumann A; Navarro-González M; Peddireddi S; Kües U; Polle A
    Fungal Genet Biol; 2005 Oct; 42(10):829-35. PubMed ID: 16098775
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Studies on pigment producing wood fungi. 3. Changes in fatty acid composition of lipids from Peniophora sanguinea (Fr.) Bres. after tyrosine-application (author's transl)].
    von Massow F; Tevini M
    Arch Mikrobiol; 1973 Dec; 94(1):89-92. PubMed ID: 4788947
    [No Abstract]   [Full Text] [Related]  

  • 57. Biotransformation of lignin polymers derived from beech wood pulping by Sporobolomyces roseus isolated from leafy material.
    Kosíková B; Sláviková E
    Biotechnol Lett; 2004 Mar; 26(6):517-9. PubMed ID: 15127794
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Seasonal changes of C and N non-structural compounds in the stem sapwood of adult sessile oak and beech trees.
    El Zein R; Maillard P; Bréda N; Marchand J; Montpied P; Gérant D
    Tree Physiol; 2011 Aug; 31(8):843-54. PubMed ID: 21856656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diversity of saproxylic dance flies and long-legged flies (Diptera: Empidoidea) in a temperate deciduous forest in Quebec, Canada.
    Cumming JM; Sinclair BJ; Brooks SE; Mlynarek J; Wheeler TA
    Zootaxa; 2018 Nov; 4521(2):287-293. PubMed ID: 30486180
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems.
    Schilling JS; Tewalt JP; Duncan SM
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):465-75. PubMed ID: 19343340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.