BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 21932278)

  • 41. Crossing microfluidic streamlines to lyse, label and wash cells.
    Morton KJ; Loutherback K; Inglis DW; Tsui OK; Sturm JC; Chou SY; Austin RH
    Lab Chip; 2008 Sep; 8(9):1448-53. PubMed ID: 18818798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic viability of Escherichia coli trapped by dielectrophoresis in microfluidics.
    Donato SS; Chu V; Prazeres DM; Conde JP
    Electrophoresis; 2013 Feb; 34(4):575-82. PubMed ID: 23175163
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.
    Chen J; Zheng Y; Tan Q; Shojaei-Baghini E; Zhang YL; Li J; Prasad P; You L; Wu XY; Sun Y
    Lab Chip; 2011 Sep; 11(18):3174-81. PubMed ID: 21826361
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A microfluidic digital single-cell assay for the evaluation of anticancer drugs.
    Wang Y; Tang X; Feng X; Liu C; Chen P; Chen D; Liu BF
    Anal Bioanal Chem; 2015 Feb; 407(4):1139-48. PubMed ID: 25433683
    [TBL] [Abstract][Full Text] [Related]  

  • 45. nDEP microwells for single-cell patterning in physiological media.
    Mittal N; Rosenthal A; Voldman J
    Lab Chip; 2007 Sep; 7(9):1146-53. PubMed ID: 17713613
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells.
    Zhu Z; Frey O; Ottoz DS; Rudolf F; Hierlemann A
    Lab Chip; 2012 Mar; 12(5):906-15. PubMed ID: 22193373
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A microchamber array for single cell isolation and analysis of intracellular biomolecules.
    Eyer K; Kuhn P; Hanke C; Dittrich PS
    Lab Chip; 2012 Feb; 12(4):765-72. PubMed ID: 22183159
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A prototypic system of parallel electrophoresis in multiple capillaries coupled with microwell arrays.
    Su J; Ren K; Dai W; Zhao Y; Zhou J; Wu H
    Electrophoresis; 2011 Nov; 32(23):3324-30. PubMed ID: 22072541
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-cell culture in microwells.
    Lindström S; Andersson-Svahn H
    Methods Mol Biol; 2012; 853():41-52. PubMed ID: 22323139
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Droplet microfluidics for high-throughput analysis of cells and particles.
    Zagnoni M; Cooper JM
    Methods Cell Biol; 2011; 102():25-48. PubMed ID: 21704834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays.
    Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J
    Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network.
    Kim C; Bang JH; Kim YE; Lee SH; Kang JY
    Lab Chip; 2012 Oct; 12(20):4135-42. PubMed ID: 22864534
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Massive Parallel Analysis of Single Cells in an Integrated Microfluidic Platform.
    Jimenez-Valdes RJ; Rodriguez-Moncayo R; Cedillo-Alcantar DF; Garcia-Cordero JL
    Anal Chem; 2017 May; 89(10):5210-5220. PubMed ID: 28406613
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A facile single-cell patterning strategy based on harbor-like microwell microfluidics.
    Sun Y; Liu Y; Sun D; Liu K; Li Y; Liu Y; Zhang S
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38772387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device.
    Okuyama T; Yamazoe H; Mochizuki N; Khademhosseini A; Suzuki H; Fukuda J
    J Biosci Bioeng; 2010 Nov; 110(5):572-6. PubMed ID: 20591731
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip.
    Lin CH; Lee DC; Chang HC; Chiu IM; Hsu CH
    Anal Chem; 2013 Dec; 85(24):11920-8. PubMed ID: 24228937
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-cell level co-culture platform for intercellular communication.
    Hong S; Pan Q; Lee LP
    Integr Biol (Camb); 2012 Apr; 4(4):374-80. PubMed ID: 22434268
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing.
    Xu CX; Yin XF
    J Chromatogr A; 2011 Feb; 1218(5):726-32. PubMed ID: 21185567
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Monitoring the dynamics of primary T cell activation and differentiation using long term live cell imaging in microwell arrays.
    Zaretsky I; Polonsky M; Shifrut E; Reich-Zeliger S; Antebi Y; Aidelberg G; Waysbort N; Friedman N
    Lab Chip; 2012 Dec; 12(23):5007-15. PubMed ID: 23072772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.