BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 21932449)

  • 1. Differentiation of human thymic regulatory T cells at the double positive stage.
    Nunes-Cabaço H; Caramalho I; Sepúlveda N; Sousa AE
    Eur J Immunol; 2011 Dec; 41(12):3604-14. PubMed ID: 21932449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells.
    Aarts-Riemens T; Emmelot ME; Verdonck LF; Mutis T
    Eur J Immunol; 2008 May; 38(5):1381-90. PubMed ID: 18412171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of Foxp3 splice variants in human CD4+ and CD8+ T cells--identification of Foxp3Δ7 in human regulatory T cells.
    Kaur G; Goodall JC; Jarvis LB; Hill Gaston JS
    Mol Immunol; 2010; 48(1-3):321-32. PubMed ID: 20688398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human thymocytes become lineage committed at an early postselection CD69+ stage, before the onset of functional maturation.
    Vanhecke D; Verhasselt B; De Smedt M; Leclercq G; Plum J; Vandekerckhove B
    J Immunol; 1997 Dec; 159(12):5973-83. PubMed ID: 9550395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic and transcriptional analysis supports human regulatory T cell commitment at the CD4+CD8+ thymocyte stage.
    Vanhanen R; Leskinen K; Mattila IP; Saavalainen P; Arstila TP
    Cell Immunol; 2020 Jan; 347():104026. PubMed ID: 31843201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin-7 promotes human regulatory T cell development at the CD4+CD8+ double-positive thymocyte stage.
    Tuulasvaara A; Vanhanen R; Baldauf HM; Puntila J; Arstila TP
    J Leukoc Biol; 2016 Sep; 100(3):491-8. PubMed ID: 26965634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent thymic origin, differentiation, and turnover of regulatory T cells.
    Mabarrack NH; Turner NL; Mayrhofer G
    J Leukoc Biol; 2008 Nov; 84(5):1287-97. PubMed ID: 18682578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique phenotype of human tonsillar and in vitro-induced FOXP3+CD8+ T cells.
    Siegmund K; Rückert B; Ouaked N; Bürgler S; Speiser A; Akdis CA; Schmidt-Weber CB
    J Immunol; 2009 Feb; 182(4):2124-30. PubMed ID: 19201865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-Ras or K-Ras inhibition increases the number and enhances the function of Foxp3 regulatory T cells.
    Mor A; Keren G; Kloog Y; George J
    Eur J Immunol; 2008 Jun; 38(6):1493-502. PubMed ID: 18461565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD8+ Foxp3+ T cells share developmental and phenotypic features with classical CD4+ Foxp3+ regulatory T cells but lack potent suppressive activity.
    Mayer CT; Floess S; Baru AM; Lahl K; Huehn J; Sparwasser T
    Eur J Immunol; 2011 Mar; 41(3):716-25. PubMed ID: 21312192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CD4(+)CD8(+) and CD4(+) subsets of FOXP3(+) thymocytes differ in their response to growth factor deprivation or stimulation.
    Lehtoviita A; Rossi LH; Kekäläinen E; Sairanen H; Arstila TP
    Scand J Immunol; 2009 Oct; 70(4):377-83. PubMed ID: 19751272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells.
    Pacholczyk R; Ignatowicz H; Kraj P; Ignatowicz L
    Immunity; 2006 Aug; 25(2):249-59. PubMed ID: 16879995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ex vivo IL-1 receptor type I expression in human CD4+ T cells identifies an early intermediate in the differentiation of Th17 from FOXP3+ naive regulatory T cells.
    Raffin C; Raimbaud I; Valmori D; Ayyoub M
    J Immunol; 2011 Nov; 187(10):5196-202. PubMed ID: 21998454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IL-2 contributes to maintaining a balance between CD4+Foxp3+ regulatory T cells and effector CD4+ T cells required for immune control of blood-stage malaria infection.
    Berretta F; St-Pierre J; Piccirillo CA; Stevenson MM
    J Immunol; 2011 Apr; 186(8):4862-71. PubMed ID: 21389253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. c-Rel: a pioneer in directing regulatory T-cell lineage commitment?
    Hori S
    Eur J Immunol; 2010 Mar; 40(3):664-7. PubMed ID: 20162555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maternal Foxp3 expressing CD4+ CD25+ and CD4+ CD25- regulatory T-cell populations are enriched in human early normal pregnancy decidua: a phenotypic study of paired decidual and peripheral blood samples.
    Dimova T; Nagaeva O; Stenqvist AC; Hedlund M; Kjellberg L; Strand M; Dehlin E; Mincheva-Nilsson L
    Am J Reprod Immunol; 2011 Jul; 66 Suppl 1():44-56. PubMed ID: 21726337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thymic regulation of autoimmune disease by accelerated differentiation of Foxp3+ regulatory T cells through IL-7 signaling pathway.
    Chen X; Fang L; Song S; Guo TB; Liu A; Zhang JZ
    J Immunol; 2009 Nov; 183(10):6135-44. PubMed ID: 19841165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. B7+ iris pigment epithelial cells convert T cells into CTLA-4+, B7-expressing CD8+ regulatory T cells.
    Sugita S; Keino H; Futagami Y; Takase H; Mochizuki M; Stein-Streilein J; Streilein JW
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5376-84. PubMed ID: 17122127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aire and Foxp3 expression in a particular microenvironment for T cell differentiation.
    Hansenne I; Louis C; Martens H; Dorban G; Charlet-Renard C; Peterson P; Geenen V
    Neuroimmunomodulation; 2009 Jan; 16(1):35-44. PubMed ID: 19077444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subpopulations of equine blood lymphocytes expressing regulatory T cell markers.
    Robbin MG; Wagner B; Noronha LE; Antczak DF; de Mestre AM
    Vet Immunol Immunopathol; 2011 Mar; 140(1-2):90-101. PubMed ID: 21208665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.