These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21932466)

  • 1. Identification of acetyl phosphate as the product of clostridial glycine reductase: Evidence for an acyl enzyme intermediate.
    Arkowitz RA; Abeles RH
    Biochemistry; 1989 May; 28(11):4639-44. PubMed ID: 21932466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of action of clostridial glycine reductase: isolation and characterization of a covalent acetyl enzyme intermediate.
    Arkowitz RA; Abeles RH
    Biochemistry; 1991 Apr; 30(16):4090-7. PubMed ID: 2018775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clostridial glycine reductase: protein C, the acetyl group acceptor, catalyzes the arsenate-dependent decomposition of acetyl phosphate.
    Stadtman TC
    Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7853-6. PubMed ID: 2813361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic and stereochemical studies on the glycine reductase of Clostridium sticklandii.
    Barnard GF; Akhtar M
    Eur J Biochem; 1979 Sep; 99(3):593-603. PubMed ID: 499219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence.
    Fonknechten N; Chaussonnerie S; Tricot S; Lajus A; Andreesen JR; Perchat N; Pelletier E; Gouyvenoux M; Barbe V; Salanoubat M; Le Paslier D; Weissenbach J; Cohen GN; Kreimeyer A
    BMC Genomics; 2010 Oct; 11():555. PubMed ID: 20937090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fate of the carboxyl oxygens during D-proline reduction by clostridial proline reductase.
    Arkowitz RA; Dhe-Paganon S; Abeles RH
    Arch Biochem Biophys; 1994 Jun; 311(2):457-9. PubMed ID: 8203910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cys359 of GrdD is the active-site thiol that catalyses the final step of acetyl phosphate formation by glycine reductase from Eubacterium acidaminophilum.
    Kohlstock UM; Rücknagel KP; Reuter M; Schierhorn A; Andreesen JR; Söhling B
    Eur J Biochem; 2001 Dec; 268(24):6417-25. PubMed ID: 11737196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of protein PC, a component of glycine reductase from Eubacterium acidaminophilum.
    Schräder T; Andreesen JR
    Eur J Biochem; 1992 May; 206(1):79-85. PubMed ID: 1587286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycine metabolism in anaerobes.
    Andreesen JR
    Antonie Van Leeuwenhoek; 1994; 66(1-3):223-37. PubMed ID: 7747933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycine reductase protein C. Properties and characterization of its role in the reductive cleavage of Se-carboxymethyl-selenoprotein A.
    Stadtman TC; Davis JN
    J Biol Chem; 1991 Nov; 266(33):22147-53. PubMed ID: 1939235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of protein PB of betaine reductase and its relationship to the corresponding proteins glycine reductase and sarcosine reductase from Eubacterium acidaminophilum.
    Meyer M; Granderath K; Andreesen JR
    Eur J Biochem; 1995 Nov; 234(1):184-91. PubMed ID: 8529639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clostridium sticklandii glycine reductase selenoprotein A gene: cloning, sequencing, and expression in Escherichia coli.
    Garcia GE; Stadtman TC
    J Bacteriol; 1992 Nov; 174(22):7080-9. PubMed ID: 1429431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenium-dependent glycine reductase: differences in physicochemical properties and biological activities of selenoprotein A components isolated from Clostridium sticklandii and Clostridium purinolyticum.
    Sliwkowski MX; Stadtman TC
    Biofactors; 1988 Dec; 1(4):293-6. PubMed ID: 3255358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenium-dependent growth and glycine fermentation by Clostridium purinolyticum.
    Dürre P; Andreesen JR
    J Gen Microbiol; 1982 Jul; 128(7):1457-66. PubMed ID: 7119740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenium-dependent clostridial glycine reductase. Purification and characterization of the two membrane-associated protein components.
    Tanaka H; Stadtman TC
    J Biol Chem; 1979 Jan; 254(2):447-52. PubMed ID: 762072
    [No Abstract]   [Full Text] [Related]  

  • 16. Selenium-dependent growth of Treponema denticola: evidence for a clostridial-type glycine reductase.
    Rother M; Böck A; Wyss C
    Arch Microbiol; 2001 Dec; 177(1):113-6. PubMed ID: 11797052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of the glycine cleavage reaction. Further characterization of the intermediate attached to H-protein and of the reaction catalyzed by T-protein.
    Fujiwara K; Okamura-Ikeda K; Motokawa Y
    J Biol Chem; 1984 Sep; 259(17):10664-8. PubMed ID: 6469978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of an atypically small lipoamide dehydrogenase involved in the glycine decarboxylase complex from Eubacterium acidaminophilum.
    Freudenberg W; Dietrichs D; Lebertz H; Andreesen JR
    J Bacteriol; 1989 Mar; 171(3):1346-54. PubMed ID: 2537814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selenium-dependent clostridial glycine reductase.
    Stadtman TC
    Methods Enzymol; 1978; 53():373-82. PubMed ID: 713845
    [No Abstract]   [Full Text] [Related]  

  • 20. Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of
    Song Y; Lee JS; Shin J; Lee GM; Jin S; Kang S; Lee JK; Kim DR; Lee EY; Kim SC; Cho S; Kim D; Cho BK
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7516-7523. PubMed ID: 32170009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.