These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21932874)

  • 1. Local pressure components and surface tension of spherical interfaces. Thermodynamic versus mechanical definitions. I. A mesoscale modeling of droplets.
    Ghoufi A; Malfreyt P
    J Chem Phys; 2011 Sep; 135(10):104105. PubMed ID: 21932874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of the surface tension from multibody dissipative particle dynamics and Monte Carlo methods.
    Ghoufi A; Malfreyt P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016706. PubMed ID: 20866760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of the surface tension and pressure components from a non-exponential perturbation method of the thermodynamic route.
    Ghoufi A; Malfreyt P
    J Chem Phys; 2012 Jan; 136(2):024104. PubMed ID: 22260561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-dependent surface tension and Tolman's length of droplets.
    Lu HM; Jiang Q
    Langmuir; 2005 Jan; 21(2):779-81. PubMed ID: 15641854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A perspective on the interfacial properties of nanoscopic liquid drops.
    Malijevský A; Jackson G
    J Phys Condens Matter; 2012 Nov; 24(46):464121. PubMed ID: 23114181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface tension of water and acid gases from Monte Carlo simulations.
    Ghoufi A; Goujon F; Lachet V; Malfreyt P
    J Chem Phys; 2008 Apr; 128(15):154716. PubMed ID: 18433267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of the surface tension from Monte Carlo simulations: does the model impact on the finite-size effects?
    Biscay F; Ghoufi A; Goujon F; Lachet V; Malfreyt P
    J Chem Phys; 2009 May; 130(18):184710. PubMed ID: 19449946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of the surface tension of cyclic and aromatic hydrocarbons from Monte Carlo simulations using an anisotropic united atom model (AUA).
    Biscay F; Ghoufi A; Lachet V; Malfreyt P
    Phys Chem Chem Phys; 2009 Aug; 11(29):6132-47. PubMed ID: 19606323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials.
    Gloor GJ; Jackson G; Blas FJ; de Miguel E
    J Chem Phys; 2005 Oct; 123(13):134703. PubMed ID: 16223322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic Interactions in Dissipative Particle Dynamics: Toward a Mesoscale Modeling of the Polyelectrolyte Brushes.
    Ibergay C; Malfreyt P; Tildesley DJ
    J Chem Theory Comput; 2009 Dec; 5(12):3245-59. PubMed ID: 26602508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dispersive long-range corrections to the pressure tensor: the vapour-liquid interfacial properties of the Lennard-Jones system revisited.
    Martínez-Ruiz FJ; Blas FJ; Mendiboure B; Moreno-Ventas Bravo AI
    J Chem Phys; 2014 Nov; 141(18):184701. PubMed ID: 25399153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three hard spheres in a spherical cavity.
    Urrutia I
    J Chem Phys; 2011 Jul; 135(2):024511. PubMed ID: 21766961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics study of the surface tension of a binary immiscible fluid.
    Simmons V; Hubbard JB
    J Chem Phys; 2004 Feb; 120(6):2893-900. PubMed ID: 15268437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct determination of the Tolman length from the bulk pressures of liquid drops via molecular dynamics simulations.
    van Giessen AE; Blokhuis EM
    J Chem Phys; 2009 Oct; 131(16):164705. PubMed ID: 19894968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communications: Evidence for the role of fluctuations in the thermodynamics of nanoscale drops and the implications in computations of the surface tension.
    Sampayo JG; Malijevský A; Müller EA; de Miguel E; Jackson G
    J Chem Phys; 2010 Apr; 132(14):141101. PubMed ID: 20405977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of the liquid surface of the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide: structure and surface tension.
    Sanmartín Pensado A; Malfreyt P; Pádua AA
    J Phys Chem B; 2009 Nov; 113(44):14708-18. PubMed ID: 19863141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo calculation of the methane-water interfacial tension at high pressures.
    Biscay F; Ghoufi A; Lachet V; Malfreyt P
    J Chem Phys; 2009 Sep; 131(12):124707. PubMed ID: 19791912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-size effects in dissipative particle dynamics simulations.
    Velázquez ME; Gama-Goicochea A; González-Melchor M; Neria M; Alejandre J
    J Chem Phys; 2006 Feb; 124(8):084104. PubMed ID: 16512705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo versus molecular dynamics simulations in heterogeneous systems: an application to the n-pentane liquid-vapor interface.
    Goujon F; Malfreyt P; Simon JM; Boutin A; Rousseau B; Fuchs AH
    J Chem Phys; 2004 Dec; 121(24):12559-71. PubMed ID: 15606277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the pressure tensor and surface tension for molecular fluids with discontinuous potentials using the volume perturbation method.
    Jiménez-Serratos G; Vega C; Gil-Villegas A
    J Chem Phys; 2012 Nov; 137(20):204104. PubMed ID: 23205978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.