BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 21933017)

  • 1. An elastomeric patch electrospun from a blended solution of dermal extracellular matrix and biodegradable polyurethane for rat abdominal wall repair.
    Hong Y; Takanari K; Amoroso NJ; Hashizume R; Brennan-Pierce EP; Freund JM; Badylak SF; Wagner WR
    Tissue Eng Part C Methods; 2012 Feb; 18(2):122-32. PubMed ID: 21933017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold.
    Hong Y; Huber A; Takanari K; Amoroso NJ; Hashizume R; Badylak SF; Wagner WR
    Biomaterials; 2011 May; 32(13):3387-94. PubMed ID: 21303718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds.
    Hong Y; Guan J; Fujimoto KL; Hashizume R; Pelinescu AL; Wagner WR
    Biomaterials; 2010 May; 31(15):4249-58. PubMed ID: 20188411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle derived stem cells microintegrated into a biodegradable elastomer for reconstruction of the abdominal wall.
    Takanari K; Hashizume R; Hong Y; Amoroso NJ; Yoshizumi T; Gharaibeh B; Yoshida O; Nonaka K; Sato H; Huard J; Wagner WR
    Biomaterials; 2017 Jan; 113():31-41. PubMed ID: 27810640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of two porcine-derived materials for repairing abdominal wall defects in rats.
    Liu Z; Tang R; Zhou Z; Song Z; Wang H; Gu Y
    PLoS One; 2011; 6(5):e20520. PubMed ID: 21637777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological and mechanical characteristics of the reconstructed rat abdominal wall following use of a wet electrospun biodegradable polyurethane elastomer scaffold.
    Hashizume R; Fujimoto KL; Hong Y; Amoroso NJ; Tobita K; Miki T; Keller BB; Sacks MS; Wagner WR
    Biomaterials; 2010 Apr; 31(12):3253-65. PubMed ID: 20138661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abdominal wall reconstruction by a regionally distinct biocomposite of extracellular matrix digest and a biodegradable elastomer.
    Takanari K; Hong Y; Hashizume R; Huber A; Amoroso NJ; D'Amore A; Badylak SF; Wagner WR
    J Tissue Eng Regen Med; 2016 Sep; 10(9):748-61. PubMed ID: 24376045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine.
    Fang J; Ye SH; Shankarraman V; Huang Y; Mo X; Wagner WR
    Acta Biomater; 2014 Nov; 10(11):4639-4649. PubMed ID: 25132273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix.
    Stankus JJ; Freytes DO; Badylak SF; Wagner WR
    J Biomater Sci Polym Ed; 2008; 19(5):635-52. PubMed ID: 18419942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy.
    Hashizume R; Hong Y; Takanari K; Fujimoto KL; Tobita K; Wagner WR
    Biomaterials; 2013 Oct; 34(30):7353-63. PubMed ID: 23827185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications.
    Guan J; Fujimoto KL; Sacks MS; Wagner WR
    Biomaterials; 2005 Jun; 26(18):3961-71. PubMed ID: 15626443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.
    Bonvallet PP; Schultz MJ; Mitchell EH; Bain JL; Culpepper BK; Thomas SJ; Bellis SL
    PLoS One; 2015; 10(3):e0122359. PubMed ID: 25793720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A porcine-derived acellular dermal scaffold that supports soft tissue regeneration: removal of terminal galactose-alpha-(1,3)-galactose and retention of matrix structure.
    Xu H; Wan H; Zuo W; Sun W; Owens RT; Harper JR; Ayares DL; McQuillan DJ
    Tissue Eng Part A; 2009 Jul; 15(7):1807-19. PubMed ID: 19196142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic polyurethane/TiO
    Zhu Q; Li X; Fan Z; Xu Y; Niu H; Li C; Dang Y; Huang Z; Wang Y; Guan J
    Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():79-87. PubMed ID: 29407160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive characterization of polyurethane-based tissue constructs in a rat abdominal repair model using high frequency ultrasound elasticity imaging.
    Yu J; Takanari K; Hong Y; Lee KW; Amoroso NJ; Wang Y; Wagner WR; Kim K
    Biomaterials; 2013 Apr; 34(11):2701-9. PubMed ID: 23347836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration.
    Xu C; Huang Y; Tang L; Hong Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2169-2180. PubMed ID: 28036169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties.
    Ma Z; Hong Y; Nelson DM; Pichamuthu JE; Leeson CE; Wagner WR
    Biomacromolecules; 2011 Sep; 12(9):3265-74. PubMed ID: 21755999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis.
    Parenteau-Bareil R; Gauvin R; Cliche S; Gariépy C; Germain L; Berthod F
    Acta Biomater; 2011 Oct; 7(10):3757-65. PubMed ID: 21723967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization, and paclitaxel release from a biodegradable, elastomeric, poly(ester urethane)urea bearing phosphorylcholine groups for reduced thrombogenicity.
    Hong Y; Ye SH; Pelinescu AL; Wagner WR
    Biomacromolecules; 2012 Nov; 13(11):3686-94. PubMed ID: 23035885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.