These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21933037)

  • 1. Coupled objective function to study the role of abdominal muscle forces in lifting using the kinematics-driven model.
    El Ouaaid Z; Shirazi-Adl A; Arjmand N; Plamondon A
    Comput Methods Biomech Biomed Engin; 2013; 16(1):54-65. PubMed ID: 21933037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks.
    Arjmand N; Shirazi-Adl A; Bazrgari B
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):668-75. PubMed ID: 16678948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach to evaluate abdominal coactivities for optimal spinal stability and compression force in lifting.
    El Ouaaid Z; Arjmand N; Shirazi-Adl A; Parnianpour M
    Comput Methods Biomech Biomed Engin; 2009 Dec; 12(6):735-45. PubMed ID: 19412827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trunk biomechanics during maximum isometric axial torque exertions in upright standing.
    Arjmand N; Shirazi-Adl A; Parnianpour M
    Clin Biomech (Bristol, Avon); 2008 Oct; 23(8):969-78. PubMed ID: 18513843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trunk active response and spinal forces in sudden forward loading: analysis of the role of perturbation load and pre-perturbation conditions by a kinematics-driven model.
    Shahvarpour A; Shirazi-Adl A; Larivière C; Bazrgari B
    J Biomech; 2015 Jan; 48(1):44-52. PubMed ID: 25476501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.
    Arjmand N; Ekrami O; Shirazi-Adl A; Plamondon A; Parnianpour M
    J Biomech; 2013 May; 46(8):1454-62. PubMed ID: 23541615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative efficiency of abdominal muscles in spine stability.
    Arjmand N; Shirazi-Adl A; Parnianpour M
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):291-9. PubMed ID: 18568826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of kinematics-based model predictions to optimization criteria in static lifting tasks.
    Arjmand N; Shirazi-Adl A
    Med Eng Phys; 2006 Jul; 28(6):504-14. PubMed ID: 16288897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal stability and role of passive stiffness in dynamic squat and stoop lifts.
    Bazrgari B; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):351-60. PubMed ID: 17852177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trunk response analysis under sudden forward perturbations using a kinematics-driven model.
    Bazrgari B; Shirazi-Adl A; Larivière C
    J Biomech; 2009 Jun; 42(9):1193-200. PubMed ID: 19375707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transverse-contour modeling of trunk muscle-distributed forces and spinal loads during lifting and twisting.
    Davis JR; Mirka GA
    Spine (Phila Pa 1976); 2000 Jan; 25(2):180-9. PubMed ID: 10685481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient analysis of trunk response in sudden release loading using kinematics-driven finite element model.
    Bazrgari B; Shirazi-Adl A; Parnianpour M
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):341-7. PubMed ID: 19285367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a role of antagonistic cocontraction in controlling trunk stiffness during lifting.
    van Dieën JH; Kingma I; van der Bug P
    J Biomech; 2003 Dec; 36(12):1829-36. PubMed ID: 14614936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities.
    Arjmand N; Plamondon A; Shirazi-Adl A; Parnianpour M; Larivière C
    Clin Biomech (Bristol, Avon); 2012 Jul; 27(6):537-44. PubMed ID: 22265249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a stiff lifting belt on spine compression during lifting.
    Kingma I; Faber GS; Suwarganda EK; Bruijnen TB; Peters RJ; van Dieën JH
    Spine (Phila Pa 1976); 2006 Oct; 31(22):E833-9. PubMed ID: 17047531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of variation in external pulling force magnitude, elevation, and orientation on trunk muscle forces, spinal loads and stability.
    El Ouaaid Z; Shirazi-Adl A; Plamondon A
    J Biomech; 2016 Apr; 49(6):946-952. PubMed ID: 26475220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions.
    Arjmand N; Shirazi-Adl A
    J Biomech; 2006; 39(3):510-21. PubMed ID: 16389091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches.
    Mohammadi Y; Arjmand N; Shirazi-Adl A
    Med Eng Phys; 2015 Aug; 37(8):792-800. PubMed ID: 26117333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of intra-abdominal pressure in the unloading and stabilization of the human spine during static lifting tasks.
    Arjmand N; Shirazi-Adl A
    Eur Spine J; 2006 Aug; 15(8):1265-75. PubMed ID: 16333683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.