These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21933137)

  • 1. A large-scale comparison of computational models on the residue flexibility for NMR-derived proteins.
    Zhang H; Shi H; Hanlon M
    Protein Pept Lett; 2012 Feb; 19(2):244-51. PubMed ID: 21933137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into equilibrium dynamics of proteins from comparison of NMR and X-ray data with computational predictions.
    Yang LW; Eyal E; Chennubhotla C; Jee J; Gronenborn AM; Bahar I
    Structure; 2007 Jun; 15(6):741-9. PubMed ID: 17562320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Real-Valued Protein Residue Fluctuation Using FlexPred.
    Peterson L; Jamroz M; Kolinski A; Kihara D
    Methods Mol Biol; 2017; 1484():175-186. PubMed ID: 27787827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized spring tensor models for protein fluctuation dynamics and conformation changes.
    Na H; Lin TL; Song G
    Adv Exp Med Biol; 2014; 805():107-35. PubMed ID: 24446359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensorial elastic network model for protein dynamics: integration of the anisotropic network model with bond-bending and twist elasticities.
    Srivastava A; Halevi RB; Veksler A; Granek R
    Proteins; 2012 Dec; 80(12):2692-700. PubMed ID: 22847894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-based Gaussian network model for protein dynamics.
    Zhang H; Kurgan L
    Bioinformatics; 2014 Feb; 30(4):497-505. PubMed ID: 24336646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TASSER-based refinement of NMR structures.
    Lee SY; Zhang Y; Skolnick J
    Proteins; 2006 May; 63(3):451-6. PubMed ID: 16456861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures?
    Garbuzynskiy SO; Melnik BS; Lobanov MY; Finkelstein AV; Galzitskaya OV
    Proteins; 2005 Jul; 60(1):139-47. PubMed ID: 15856480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaussian network model can be enhanced by combining solvent accessibility in proteins.
    Zhang H; Jiang T; Shan G; Xu S; Song Y
    Sci Rep; 2017 Aug; 7(1):7486. PubMed ID: 28790346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RSARF: prediction of residue solvent accessibility from protein sequence using random forest method.
    Pugalenthi G; Kandaswamy KK; Chou KC; Vivekanandan S; Kolatkar P
    Protein Pept Lett; 2012 Jan; 19(1):50-6. PubMed ID: 21919860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A large data set comparison of protein structures determined by crystallography and NMR: statistical test for structural differences and the effect of crystal packing.
    Andrec M; Snyder DA; Zhou Z; Young J; Montelione GT; Levy RM
    Proteins; 2007 Nov; 69(3):449-65. PubMed ID: 17623851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a novel globular protein fold with atomic-level accuracy.
    Kuhlman B; Dantas G; Ireton GC; Varani G; Stoddard BL; Baker D
    Science; 2003 Nov; 302(5649):1364-8. PubMed ID: 14631033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. vGNM: a better model for understanding the dynamics of proteins in crystals.
    Song G; Jernigan RL
    J Mol Biol; 2007 Jun; 369(3):880-93. PubMed ID: 17451743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles.
    Möglich A; Weinfurtner D; Maurer T; Gronwald W; Kalbitzer HR
    BMC Bioinformatics; 2005 Apr; 6():91. PubMed ID: 15819976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling (15)N-NMR relaxation data.
    Temiz NA; Meirovitch E; Bahar I
    Proteins; 2004 Nov; 57(3):468-80. PubMed ID: 15382240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction of protein folding rates from sequence and sequence-derived residue flexibility and solvent accessibility.
    Gao J; Zhang T; Zhang H; Shen S; Ruan J; Kurgan L
    Proteins; 2010 Jul; 78(9):2114-30. PubMed ID: 20455267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced prediction of conformational flexibility and phosphorylation in proteins.
    Swaminathan K; Adamczak R; Porollo A; Meller J
    Adv Exp Med Biol; 2010; 680():307-19. PubMed ID: 20865514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Structure Prediction from NMR Hydrogen-Deuterium Exchange Data.
    Marzolf DR; Seffernick JT; Lindert S
    J Chem Theory Comput; 2021 Apr; 17(4):2619-2629. PubMed ID: 33780620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative analysis of the equilibrium dynamics of a designed protein inferred from NMR, X-ray, and computations.
    Liu L; Koharudin LM; Gronenborn AM; Bahar I
    Proteins; 2009 Dec; 77(4):927-39. PubMed ID: 19688820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.