BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

642 related articles for article (PubMed ID: 21933453)

  • 1. Bromodomains as therapeutic targets.
    Muller S; Filippakopoulos P; Knapp S
    Expert Rev Mol Med; 2011 Sep; 13():e29. PubMed ID: 21933453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in the development and application of small molecule inhibitors of bromodomain-acetyl-lysine interactions.
    Hewings DS; Rooney TP; Jennings LE; Hay DA; Schofield CJ; Brennan PE; Knapp S; Conway SJ
    J Med Chem; 2012 Nov; 55(22):9393-413. PubMed ID: 22924434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Writers and readers of histone acetylation: structure, mechanism, and inhibition.
    Marmorstein R; Zhou MM
    Cold Spring Harb Perspect Biol; 2014 Jul; 6(7):a018762. PubMed ID: 24984779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small molecule inhibitors of bromodomain-acetyl-lysine interactions.
    Brand M; Measures AR; Wilson BG; Cortopassi WA; Alexander R; Höss M; Hewings DS; Rooney TP; Paton RS; Conway SJ
    ACS Chem Biol; 2015 Jan; 10(1):22-39. PubMed ID: 25549280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disrupting Acetyl-lysine Interactions: Recent Advance in the Development of BET Inhibitors.
    Zhang F; Ma S
    Curr Drug Targets; 2018; 19(10):1148-1165. PubMed ID: 29189147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of human bromodomains in chromatin biology and gene transcription.
    Sanchez R; Zhou MM
    Curr Opin Drug Discov Devel; 2009 Sep; 12(5):659-65. PubMed ID: 19736624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chemical toolbox for the study of bromodomains and epigenetic signaling.
    Wu Q; Heidenreich D; Zhou S; Ackloo S; Krämer A; Nakka K; Lima-Fernandes E; Deblois G; Duan S; Vellanki RN; Li F; Vedadi M; Dilworth J; Lupien M; Brennan PE; Arrowsmith CH; Müller S; Fedorov O; Filippakopoulos P; Knapp S
    Nat Commun; 2019 Apr; 10(1):1915. PubMed ID: 31015424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine acetylation and cancer: A proteomics perspective.
    Gil J; Ramírez-Torres A; Encarnación-Guevara S
    J Proteomics; 2017 Jan; 150():297-309. PubMed ID: 27746255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone recognition and large-scale structural analysis of the human bromodomain family.
    Filippakopoulos P; Picaud S; Mangos M; Keates T; Lambert JP; Barsyte-Lovejoy D; Felletar I; Volkmer R; Müller S; Pawson T; Gingras AC; Arrowsmith CH; Knapp S
    Cell; 2012 Mar; 149(1):214-31. PubMed ID: 22464331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disrupting Acetyl-Lysine Recognition: Progress in the Development of Bromodomain Inhibitors.
    Romero FA; Taylor AM; Crawford TD; Tsui V; Côté A; Magnuson S
    J Med Chem; 2016 Feb; 59(4):1271-98. PubMed ID: 26572217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery.
    Fu LL; Tian M; Li X; Li JJ; Huang J; Ouyang L; Zhang Y; Liu B
    Oncotarget; 2015 Mar; 6(8):5501-16. PubMed ID: 25849938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Histone Acetylation Cycle in the Protozoan Model
    Wahab S; Saettone A; Nabeel-Shah S; Dannah N; Fillingham J
    Front Cell Dev Biol; 2020; 8():509. PubMed ID: 32695779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Combinatorial Histone Modifications on Acetyllysine Recognition by the ATAD2 and ATAD2B Bromodomains.
    Phillips M; Malone KL; Boyle BW; Montgomery C; Kressy IA; Joseph FM; Bright KM; Boyson SP; Chang S; Nix JC; Young NL; Jeffers V; Frietze S; Glass KC
    J Med Chem; 2024 May; 67(10):8186-8200. PubMed ID: 38733345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-molecule BET inhibitors in clinical and preclinical development and their therapeutic potential.
    Yu L; Wang Z; Zhang Z; Ren X; Lu X; Ding K
    Curr Top Med Chem; 2015; 15(8):776-94. PubMed ID: 25732788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain.
    Morinière J; Rousseaux S; Steuerwald U; Soler-López M; Curtet S; Vitte AL; Govin J; Gaucher J; Sadoul K; Hart DJ; Krijgsveld J; Khochbin S; Müller CW; Petosa C
    Nature; 2009 Oct; 461(7264):664-8. PubMed ID: 19794495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small Molecules Targeting HATs, HDACs, and BRDs in Cancer Therapy.
    Wu D; Qiu Y; Jiao Y; Qiu Z; Liu D
    Front Oncol; 2020; 10():560487. PubMed ID: 33262941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bromodomain Histone Readers and Cancer.
    Jain AK; Barton MC
    J Mol Biol; 2017 Jun; 429(13):2003-2010. PubMed ID: 27890782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging tools to investigate bromodomain functions.
    Kougnassoukou Tchara PE; Filippakopoulos P; Lambert JP
    Methods; 2020 Dec; 184():40-52. PubMed ID: 31726225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone deacetylases: salesmen and customers in the post-translational modification market.
    Brandl A; Heinzel T; Krämer OH
    Biol Cell; 2009 Apr; 101(4):193-205. PubMed ID: 19207105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small molecules as tools to study the chemical epigenetics of lysine acetylation.
    Schiedel M; Conway SJ
    Curr Opin Chem Biol; 2018 Aug; 45():166-178. PubMed ID: 29958150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.