BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21934122)

  • 1. Measurement of precursor enrichment for calculating intramuscular triglyceride fractional synthetic rate.
    Zhang XJ; Rodriguez NA; Wang L; Tuvdendorj D; Wu Z; Tan A; Herndon DN; Wolfe RR
    J Lipid Res; 2012 Jan; 53(1):119-25. PubMed ID: 21934122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute hyperinsulinemia and reduced plasma free fatty acid levels decrease intramuscular triglyceride synthesis.
    Zhang XJ; Wang L; Tuvdendorj D; Wu Z; Rodriguez NA; Herndon DN; Wolfe RR
    Metabolism; 2013 Jan; 62(1):44-51. PubMed ID: 22898252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the capacity of the beta-oxidation of palmitate and palmitoyl-esters in rat liver mitochondria.
    Farstad M; Berge R
    Acta Physiol Scand; 1978 Nov; 104(3):337-48. PubMed ID: 31061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synthetic rate of muscle triglyceride but not phospholipid is increased in obese rabbits.
    Zhang XJ; Chinkes DL; Wu Z; Herndon DN; Wolfe RR
    Metabolism; 2009 Nov; 58(11):1649-56. PubMed ID: 19608209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid oxidation by skeletal muscle homogenates from morbidly obese black and white American women.
    Privette JD; Hickner RC; Macdonald KG; Pories WJ; Barakat HA
    Metabolism; 2003 Jun; 52(6):735-8. PubMed ID: 12800100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific activity of brain palmitoyl-CoA pool provides rates of incorporation of palmitate in brain phospholipids in awake rats.
    Grange E; Deutsch J; Smith QR; Chang M; Rapoport SI; Purdon AD
    J Neurochem; 1995 Nov; 65(5):2290-8. PubMed ID: 7595518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triglycerides produced in the livers of fasting rabbits are predominantly stored as opposed to secreted into the plasma.
    Tuvdendorj D; Zhang XJ; Chinkes DL; Wang L; Wu Z; Rodriguez NA; Herndon DN; Wolfe RR
    Metabolism; 2015 May; 64(5):580-7. PubMed ID: 25682063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palmitate activation and esterification in microsomal fractions of rat liver.
    Lloyd-Davies KA; Brindley DN
    Biochem J; 1975 Oct; 152(1):39-49. PubMed ID: 813635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramuscular fatty acid metabolism evaluated with stable isotopic tracers.
    Guo Z; Jensen MD
    J Appl Physiol (1985); 1998 May; 84(5):1674-9. PubMed ID: 9572816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs.
    Schmidt I; Herpin P
    J Nutr; 1998 May; 128(5):886-93. PubMed ID: 9566999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relevance of fatty acid oxidation in regulation of the outer mitochondrial membrane permeability for ADP.
    Toleikis A; Liobikas J; Trumbeckaite S; Majiene D
    FEBS Lett; 2001 Dec; 509(2):245-9. PubMed ID: 11741597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concerted action of leptin in regulation of fatty acid oxidation in skeletal muscle and liver.
    Wein S; Ukropec J; Gasperíková D; Klimes I; Seböková E
    Exp Clin Endocrinol Diabetes; 2007 Apr; 115(4):244-51. PubMed ID: 17479441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid chain-elongation in perfused rat heart: synthesis of stearoylcarnitine from perfused palmitate.
    Kerner J; Minkler PE; Lesnefsky EJ; Hoppel CL
    FEBS Lett; 2007 Sep; 581(23):4491-4. PubMed ID: 17761175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Submicromolar concentrations of palmitoyl-CoA specifically thioesterify cysteine 244 in glyceraldehyde-3-phosphate dehydrogenase inhibiting enzyme activity: a novel mechanism potentially underlying fatty acid induced insulin resistance.
    Yang J; Gibson B; Snider J; Jenkins CM; Han X; Gross RW
    Biochemistry; 2005 Sep; 44(35):11903-12. PubMed ID: 16128592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification.
    Bruce CR; Brolin C; Turner N; Cleasby ME; van der Leij FR; Cooney GJ; Kraegen EW
    Am J Physiol Endocrinol Metab; 2007 Apr; 292(4):E1231-7. PubMed ID: 17179390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What is the proper precursor-to-product labeling relationship for calculating the fractional synthetic rate of muscle triglyceride?
    Brunengraber H
    J Lipid Res; 2012 Jan; 53(1):1-3. PubMed ID: 22075970
    [No Abstract]   [Full Text] [Related]  

  • 17. Palmitate oxidation by the mitochondria from volume-overloaded rat hearts.
    Christian B; El Alaoui-Talibi Z; Moravec M; Moravec J
    Mol Cell Biochem; 1998 Mar; 180(1-2):117-28. PubMed ID: 9546638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters.
    Chase JF; Tubbs PK
    Biochem J; 1972 Aug; 129(1):55-65. PubMed ID: 4646779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carnitine supplementation induces acylcarnitine production in tissues of very long-chain acyl-CoA dehydrogenase-deficient mice, without replenishing low free carnitine.
    Primassin S; Ter Veld F; Mayatepek E; Spiekerkoetter U
    Pediatr Res; 2008 Jun; 63(6):632-7. PubMed ID: 18317232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acid oxidation in mitochondria from needle biopsy samples of human skeletal muscle.
    Gohil K; Jones DA; Edwards RH
    Clin Sci (Lond); 1984 Feb; 66(2):173-8. PubMed ID: 6319070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.