These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21934777)

  • 41. Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding.
    Ide T; Baba T; Tatebayashi J; Iwamoto S; Nakaoka T; Arakawa Y
    Opt Express; 2005 Mar; 13(5):1615-20. PubMed ID: 19495036
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Control of Whispering Gallery Modes and PT-Symmetry Breaking in Colloidal Quantum Dot Microdisk Lasers with Engineered Notches.
    Zeng Q; Lafalce E; Lin CH; Smith MJ; Jung J; Yoon Y; Lin Z; Tsukruk VV; Vardeny ZV
    Nano Lett; 2019 Sep; 19(9):6049-6057. PubMed ID: 31373501
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrically controllable photonic molecule laser.
    Fasching G; Deutsch Ch; Benz A; Andrews AM; Klang P; Zobl R; Schrenk W; Strasser G; Ragulis P; Tamosiūnas V; Unterrainer K
    Opt Express; 2009 Oct; 17(22):20321-6. PubMed ID: 19997259
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 1.55  μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks.
    Zhu S; Shi B; Wan Y; Hu EL; Lau KM
    Opt Lett; 2017 Feb; 42(4):679-682. PubMed ID: 28198838
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 1.06-μm InGaAs/GaAs multiple-quantum-well optical thyristor lasers with a PiNiN structure.
    Wang H; Mi J; Zhou X; Meriggi L; Steer M; Cui B; Chen W; Pan J; Ding Y
    Opt Lett; 2013 Nov; 38(22):4868-71. PubMed ID: 24322153
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative analysis of cavity length-dependent temperature sensitivity of GaInNAs quantum dot lasers and quantum well lasers.
    Liu CY; Yoon SF; Cao Q; Tong CZ; Sun ZZ
    Nanotechnology; 2006 Nov; 17(22):5627-31. PubMed ID: 21727334
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved performance of InGaAs/GaAs microdisk lasers epi-side down bonded onto a silicon board.
    Zubov F; Maximov M; Moiseev E; Vorobyev A; Mozharov A; Berdnikov Y; Kaluzhnyy N; Mintairov S; Kulagina M; Kryzhanovskaya N; Zhukov A
    Opt Lett; 2021 Aug; 46(16):3853-3856. PubMed ID: 34388758
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Broadband external cavity tunable quantum dot lasers with low injection current density.
    Lv XQ; Jin P; Wang WY; Wang ZG
    Opt Express; 2010 Apr; 18(9):8916-22. PubMed ID: 20588736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrically injected GaN-based microdisk towards an efficient whispering gallery mode laser.
    Mei Y; Xie M; Xu H; Long H; Ying L; Zhang B
    Opt Express; 2021 Feb; 29(4):5598-5606. PubMed ID: 33726094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vertical external cavity surface emitting PbTe/CdTe quantum dot lasers for the mid-infrared spectral region.
    Khiar A; Eibelhuber M; Volobuev V; Witzan M; Hochreiner A; Groiss H; Springholz G
    Opt Lett; 2014 Dec; 39(23):6577-80. PubMed ID: 25490625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A CdSe quantum dot based resonant cavity light-emitting diode showing single line emission up to 90 K.
    Gust A; Kruse C; Otte K; Kalden J; Meeser T; Sebald K; Gutowski J; Hommel D
    Nanotechnology; 2009 Jan; 20(1):015401. PubMed ID: 19417251
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates.
    Wang T; Liu H; Lee A; Pozzi F; Seeds A
    Opt Express; 2011 Jun; 19(12):11381-6. PubMed ID: 21716368
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metal-cavity quantum-dot lasers with enhanced thermal performance.
    Matsudaira A; Lu CY; O'Brien T; Chuang SL
    Opt Lett; 2012 Aug; 37(16):3297-9. PubMed ID: 23381236
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single mode lasers based on slots suitable for photonic integration.
    Lu Q; Guo W; Nawrocka M; Abdullaev A; Daunt C; O'Callaghan J; Lynch M; Weldon V; Peters F; Donegan JF
    Opt Express; 2011 Dec; 19(26):B140-5. PubMed ID: 22274010
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature.
    Tombez L; Di Francesco J; Schilt S; Di Domenico G; Faist J; Thomann P; Hofstetter D
    Opt Lett; 2011 Aug; 36(16):3109-11. PubMed ID: 21847176
    [TBL] [Abstract][Full Text] [Related]  

  • 56. InAsSb/InAsSbP double heterostructure lasers for 3-4 micrometer spectral range.
    Astakhova AP; Imenkov AN; Danilova TN; Sherstnev VV; Yakovlev YP
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr; 66(4-5):824-31. PubMed ID: 17317279
    [TBL] [Abstract][Full Text] [Related]  

  • 57. T-shaped GaAs quantum-wire lasers and the exciton Mott transition.
    Yoshita M; Liu SM; Okano M; Hayamizu Y; Akiyama H; Pfeiffer LN; West KW
    J Phys Condens Matter; 2007 Jul; 19(29):295217. PubMed ID: 21483069
    [TBL] [Abstract][Full Text] [Related]  

  • 58. C and L band room-temperature continuous-wave InP-based microdisk lasers grown on silicon.
    Lin L; Xue Y; Li J; Luo W; Huang J; Lau KM
    Opt Lett; 2021 Jun; 46(12):2836-2839. PubMed ID: 34129553
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers.
    Abdollahinia A; Banyoudeh S; Rippien A; Schnabel F; Eyal O; Cestier I; Kalifa I; Mentovich E; Eisenstein G; Reithmaier JP
    Opt Express; 2018 Mar; 26(5):6056-6066. PubMed ID: 29529801
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-color multi-section quantum dot distributed feedback laser.
    Naderi NA; Grillot F; Yang K; Wright JB; Gin A; Lester LF
    Opt Express; 2010 Dec; 18(26):27028-35. PubMed ID: 21196979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.