These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21934792)

  • 1. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.
    Djordjevic IB
    Opt Express; 2011 Jul; 19(15):14277-89. PubMed ID: 21934792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication.
    Djordjevic IB; Arabaci M
    Opt Express; 2010 Nov; 18(24):24722-8. PubMed ID: 21164819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Limits of Effective Degrees of Freedom in UCA based Orbital Angular Momentum Multiplexed Communications.
    Li Z; Qu F; Wei Y; Yang G; Xu W; Xu J
    Sci Rep; 2020 Mar; 10(1):5216. PubMed ID: 32251300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing.
    Willner AE; Ren Y; Xie G; Yan Y; Li L; Zhao Z; Wang J; Tur M; Molisch AF; Ashrafi S
    Philos Trans A Math Phys Eng Sci; 2017 Feb; 375(2087):. PubMed ID: 28069770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turbulence-resistant high-capacity free-space optical communications using OAM mode group multiplexing.
    Zhu L; Deng M; Lu B; Guo X; Wang A
    Opt Express; 2023 Apr; 31(9):14454-14463. PubMed ID: 37157309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage cross-talk mitigation in an orbital-angular-momentum-based free-space optical communication system.
    Qu Z; Djordjevic IB
    Opt Lett; 2017 Aug; 42(16):3125-3128. PubMed ID: 28809889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithmic decoding of dense OAM signal constellations for optical communications in turbulence.
    Anguita JA; Cisternas JE
    Opt Express; 2022 Apr; 30(8):13540-13555. PubMed ID: 35472964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence.
    Zhang Y; Wang P; Liu T; Guo L; Li Y; Wang W
    Opt Express; 2018 Aug; 26(17):22182-22196. PubMed ID: 30130915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards fine recognition of orbital angular momentum modes through smoke.
    Qian Y; Chen H; Huo P; Wang X; Gao S; Zhang P; Gao H; Liu R; Li F
    Opt Express; 2022 Apr; 30(9):15172-15183. PubMed ID: 35473245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental demonstration of OAM-based transmitter mode diversity data transmission under atmosphere turbulence.
    Wang A; Zhu L; Deng M; Lu B; Guo X
    Opt Express; 2021 Apr; 29(9):13171-13182. PubMed ID: 33985057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance analysis of an OAM multiplexing-based MIMO FSO system over atmospheric turbulence using space-time coding with channel estimation.
    Zhang Y; Wang P; Guo L; Wang W; Tian H
    Opt Express; 2017 Aug; 25(17):19995-20011. PubMed ID: 29041685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turbulence heterodyne coherent mitigation of orbital angular momentum multiplexing in a free space optical link by auxiliary light.
    Yang C; Xu C; Ni W; Gan Y; Hou J; Chen S
    Opt Express; 2017 Oct; 25(21):25612-25624. PubMed ID: 29041226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications.
    Liu J; Wang J
    Opt Express; 2016 Feb; 24(4):4258-69. PubMed ID: 26907073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications.
    Wan Z; Shen Y; Wang Z; Shi Z; Liu Q; Fu X
    Light Sci Appl; 2022 May; 11(1):144. PubMed ID: 35585043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-efficient spatial-domain-based hybrid multidimensional coded-modulations enabling multi-Tb/s optical transport.
    Djordjevic IB
    Opt Express; 2011 Aug; 19(17):16708-14. PubMed ID: 21935032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture.
    Zheng S; Hui X; Zhu J; Chi H; Jin X; Yu S; Zhang X
    Opt Express; 2015 May; 23(9):12251-7. PubMed ID: 25969311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding.
    Malik M; O'Sullivan M; Rodenburg B; Mirhosseini M; Leach J; Lavery MP; Padgett MJ; Boyd RW
    Opt Express; 2012 Jun; 20(12):13195-200. PubMed ID: 22714347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 500  Gb/s free-space optical transmission over strong atmospheric turbulence channels.
    Qu Z; Djordjevic IB
    Opt Lett; 2016 Jul; 41(14):3285-8. PubMed ID: 27420516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconfigurable switching of orbital-angular-momentum-based free-space data channels.
    Yue Y; Huang H; Ahmed N; Yan Y; Ren Y; Xie G; Rogawski D; Tur M; Willner AE
    Opt Lett; 2013 Dec; 38(23):5118-21. PubMed ID: 24281524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient separation of the orbital angular momentum eigenstates of light.
    Mirhosseini M; Malik M; Shi Z; Boyd RW
    Nat Commun; 2013; 4():2781. PubMed ID: 24216691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.