These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 21934803)

  • 1. Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells.
    Chen JY; Chang WL; Huang CK; Sun KW
    Opt Express; 2011 Jul; 19(15):14411-9. PubMed ID: 21934803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.
    Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC
    Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS.
    Feng T; Xie D; Lin Y; Zhao H; Chen Y; Tian H; Ren T; Li X; Li Z; Wang K; Wu D; Zhu H
    Nanoscale; 2012 Mar; 4(6):2130-3. PubMed ID: 22337348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications.
    Leem JW; Song YM; Yu JS
    Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nearly zero reflectance of nano-pyramids and dual-antireflection coating structure for monocrystalline silicon solar cells.
    Chang HS; Jung HC
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3680-3. PubMed ID: 21776753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics.
    Chang CH; Yu P; Hsu MH; Tseng PC; Chang WL; Sun WC; Hsu WC; Hsu SH; Chang YC
    Nanotechnology; 2011 Mar; 22(9):095201. PubMed ID: 21258142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.
    Lee SM; Biswas R; Li W; Kang D; Chan L; Yoon J
    ACS Nano; 2014 Oct; 8(10):10507-16. PubMed ID: 25272244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference.
    Yang Q; Zhang XA; Bagal A; Guo W; Chang CH
    Nanotechnology; 2013 Jun; 24(23):235202. PubMed ID: 23676429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas.
    Cheng Q; Xu S; Ostrikov KK
    Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures.
    Oh J; Yuan HC; Branz HM
    Nat Nanotechnol; 2012 Nov; 7(11):743-8. PubMed ID: 23023643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching.
    Chen Y; Xu Z; Gartia MR; Whitlock D; Lian Y; Liu GL
    ACS Nano; 2011 Oct; 5(10):8002-12. PubMed ID: 21936527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput preparation of complex multi-scale patterns from block copolymer/homopolymer blend films.
    Park H; Kim JU; Park S
    Nanoscale; 2012 Feb; 4(4):1362-7. PubMed ID: 22241398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sol-gel-Derived nano-sized double layer anti-reflection coatings (SiO2/TiO2) for low-cost solar cell fabrication.
    Lee SJ; Hur MG; Yoon DH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7664-8. PubMed ID: 24245311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired parabola subwavelength structures for improved broadband antireflection.
    Song YM; Jang SJ; Yu JS; Lee YT
    Small; 2010 May; 6(9):984-7. PubMed ID: 20461734
    [No Abstract]   [Full Text] [Related]  

  • 17. Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells.
    Dewan R; Fischer S; Meyer-Rochow VB; Ă–zdemir Y; Hamraz S; Knipp D
    Bioinspir Biomim; 2012 Mar; 7(1):016003. PubMed ID: 22155981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored antireflective biomimetic nanostructures for UV applications.
    Morhard C; Pacholski C; Lehr D; Brunner R; Helgert M; Sundermann M; Spatz JP
    Nanotechnology; 2010 Oct; 21(42):425301. PubMed ID: 20858934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement.
    Song YM; Yu JS; Lee YT
    Opt Lett; 2010 Feb; 35(3):276-8. PubMed ID: 20125693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films.
    Joo W; Kim HJ; Kim JK
    Langmuir; 2010 Apr; 26(7):5110-4. PubMed ID: 19957944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.