These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21934861)

  • 21. Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab.
    Zhao X; Liu C; Zhang D; Luo Y
    Appl Opt; 2012 May; 51(15):3024-30. PubMed ID: 22614606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polarization independent adaptive microlens with a blue-phase liquid crystal.
    Li Y; Wu ST
    Opt Express; 2011 Apr; 19(9):8045-50. PubMed ID: 21643053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode.
    Na JH; Park SC; Kim SU; Choi Y; Lee SD
    Opt Express; 2012 Jan; 20(2):864-9. PubMed ID: 22274432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material.
    Ye M; Wang B; Sato S
    Opt Express; 2008 Mar; 16(6):4302-8. PubMed ID: 18542526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual-operation-mode liquid crystal lens.
    Huang CY; Huang YJ; Tseng YH
    Opt Express; 2009 Nov; 17(23):20860-5. PubMed ID: 19997321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical microscopy studies of dynamics within individual polymer-dispersed liquid crystal droplets.
    Higgins DA; Hall JE; Xie A
    Acc Chem Res; 2005 Feb; 38(2):137-45. PubMed ID: 15709733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes.
    Li X; Ding Y; Shao J; Liu H; Tian H
    Opt Lett; 2011 Oct; 36(20):4083-5. PubMed ID: 22002393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic.
    Hung KY; Fan CC; Tseng FG; Chen YK
    Opt Express; 2010 Mar; 18(6):6014-23. PubMed ID: 20389621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths.
    Kao YY; Chao PC; Hsueh CW
    Opt Express; 2010 Aug; 18(18):18506-18. PubMed ID: 20940742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical lens with electrically variable focus using an optically hidden dielectric structure.
    Asatryan K; Presnyakov V; Tork A; Zohrabyan A; Bagramyan A; Galstian T
    Opt Express; 2010 Jun; 18(13):13981-92. PubMed ID: 20588530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A holographic projection system with an electrically tuning and continuously adjustable optical zoom.
    Lin HC; Collings N; Chen MS; Lin YH
    Opt Express; 2012 Dec; 20(25):27222-9. PubMed ID: 23262672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Switching of polymer-stabilized vertical alignment liquid crystal cell.
    Huang CY; Jhuang WY; Hsieh CT
    Opt Express; 2008 Mar; 16(6):3859-64. PubMed ID: 18542482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Color-temperature tunable white reflector using bichiral liquid crystal films.
    Ha NY; Jeong SM; Nishimura S; Takezoe H
    Opt Express; 2010 Dec; 18(25):26339-44. PubMed ID: 21164984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles.
    Honma M; Nose T; Yanase S; Yamaguchi R; Sato S
    Opt Express; 2009 Jun; 17(13):10998-1006. PubMed ID: 19550499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive liquid lens actuated by liquid crystal pistons.
    Xu S; Ren H; Wu ST
    Opt Express; 2012 Dec; 20(27):28518-23. PubMed ID: 23263088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transmission holographic polymer dispersed liquid crystals based on a siloxane polymer.
    Woo JY; Kim EH; Kim BK
    Chemphyschem; 2008 Jan; 9(1):141-6. PubMed ID: 18080257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Completely integrated, thermo-pneumatically tunable microlens.
    Zhang W; Aljasem K; Zappe H; Seifert A
    Opt Express; 2011 Jan; 19(3):2347-62. PubMed ID: 21369053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New application of liquid crystal lens of active polarized filter for micro camera.
    Shibuya G; Okuzawa N; Hayashi M
    Opt Express; 2012 Dec; 20(25):27520-9. PubMed ID: 23262702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polarization independent two-way variable optical attenuator based on polymer-stabilized cholesteric liquid crystal.
    Huang Y
    Opt Express; 2010 May; 18(10):10289-93. PubMed ID: 20588882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.