BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21934897)

  • 1. Maximizing fluorescence collection efficiency in multiphoton microscopy.
    Zinter JP; Levene MJ
    Opt Express; 2011 Aug; 19(16):15348-62. PubMed ID: 21934897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the performance of dual-axis confocal microscopes via Monte-Carlo scattering simulations and diffraction theory.
    Chen Y; Liu JT
    J Biomed Opt; 2013 Jun; 18(6):066006. PubMed ID: 23733022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epifluorescence collection in two-photon microscopy.
    Beaurepaire E; Mertz J
    Appl Opt; 2002 Sep; 41(25):5376-82. PubMed ID: 12211567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical evaluation of temporal focusing characteristics in transparent and scattering media.
    Dana H; Shoham S
    Opt Express; 2011 Mar; 19(6):4937-48. PubMed ID: 21445129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-photon microscopy in brain tissue: parameters influencing the imaging depth.
    Oheim M; Beaurepaire E; Chaigneau E; Mertz J; Charpak S
    J Neurosci Methods; 2001 Oct; 111(1):29-37. PubMed ID: 11574117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of 3D mapping of cardiac electrical activity with spinning slit confocal optics.
    Hwang SM; Choi BR; Salama G
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1093-7. PubMed ID: 17946022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.
    Ong YH; Zhu C; Liu Q
    J Biomed Opt; 2014 Aug; 19(8):085006. PubMed ID: 25117077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entangled-photon coincidence fluorescence imaging.
    Scarcelli G; Yun SH
    Opt Express; 2008 Sep; 16(20):16189-94. PubMed ID: 18825257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy.
    Pfefer TJ; Agrawal A; Drezek RA
    J Biomed Opt; 2005; 10(4):44016. PubMed ID: 16178649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation of fluorescent light.
    Welch AJ; Gardner C; Richards-Kortum R; Chan E; Criswell G; Pfefer J; Warren S
    Lasers Surg Med; 1997; 21(2):166-78. PubMed ID: 9261794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue.
    Akbarzadeh A; Edjlali E; Sheehy G; Selb J; Agarwal R; Weber J; Leblond F
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33111509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncontact full-angle fluorescence molecular tomography system based on rotary mirrors.
    Wang D; He J; Qiao H; Li P; Fan Y; Li D
    Appl Opt; 2015 Aug; 54(23):7062-70. PubMed ID: 26368376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation of the spatial resolution and depth sensitivity of two-dimensional optical imaging of the brain.
    Tian P; Devor A; Sakadzić S; Dale AM; Boas DA
    J Biomed Opt; 2011; 16(1):016006. PubMed ID: 21280912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of optical scanned images of inhomogeneities in biological tissues by Monte Carlo simulation.
    Jeeva JB; Singh M
    Comput Biol Med; 2015 May; 60():92-9. PubMed ID: 25770705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological imaging with coherent Raman scattering microscopy: a tutorial.
    Alfonso-García A; Mittal R; Lee ES; Potma EO
    J Biomed Opt; 2014 Jul; 19(7):71407. PubMed ID: 24615671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media.
    Tanbakuchi AA; Rouse AR; Gmitro AF
    J Biomed Opt; 2009; 14(4):044024. PubMed ID: 19725735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-tissue light delivery via optrode arrays.
    Abaya TV; Diwekar M; Blair S; Tathireddy P; Rieth L; Solzbacher F
    J Biomed Opt; 2014 Jan; 19(1):15006. PubMed ID: 24407529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.