These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21934915)

  • 1. Electrowetting driven optical switch and tunable aperture.
    Murade CU; Oh JM; van den Ende D; Mugele F
    Opt Express; 2011 Aug; 19(16):15525-31. PubMed ID: 21934915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical switch based on tunable aperture.
    Li L; Liu C; Wang QH
    Opt Lett; 2012 Aug; 37(16):3306-8. PubMed ID: 23381239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting.
    Roques-Carmes T; Gigante A; Commenge JM; Corbel S
    Langmuir; 2009 Nov; 25(21):12771-9. PubMed ID: 19785398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive liquid iris based on electrowetting.
    Li L; Liu C; Ren H; Wang QH
    Opt Lett; 2013 Jul; 38(13):2336-8. PubMed ID: 23811920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical switch based on variable aperture.
    Ren H; Xu S; Wu ST
    Opt Lett; 2012 May; 37(9):1421-3. PubMed ID: 22555691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrowetting-actuated optical switch based on total internal reflection.
    Liu C; Wang D; Yao LX; Li L; Wang QH
    Appl Opt; 2015 Apr; 54(10):2672-6. PubMed ID: 25967175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Driving Method for Reducing Oil Film Splitting in Electrowetting Displays.
    Zeng W; Yi Z; Zhao Y; Wang L; Zhang J; Zhou X; Liu L; Chi F; Yang J; Zhang C
    Membranes (Basel); 2021 Nov; 11(12):. PubMed ID: 34940421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Varifocal liquid lens based on microelectrofluidic technology.
    Chang JH; Jung KD; Lee E; Choi M; Lee S; Kim W
    Opt Lett; 2012 Nov; 37(21):4377-9. PubMed ID: 23114301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of oil on an electrowetting lenticular lens and related optical characteristics.
    Shin D; Kim J; Kim C; Koo GH; Sim JH; Lee J; Won YH
    Appl Opt; 2017 Mar; 56(7):1886-1892. PubMed ID: 28248385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of MEMS devices with optical apertures for the detection of transparent biological cells.
    Zhou X; Poenar DP; Liu KY; Tse MS; Heng CK; Tan SN
    Biomed Microdevices; 2008 Oct; 10(5):639-52. PubMed ID: 18443909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the properties of terahertz filters using multilayer aperture arrays.
    Nguyen TD; Liu S; Vardeny ZV; Nahata A
    Opt Express; 2011 Sep; 19(19):18678-86. PubMed ID: 21935237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Suppressing Oil Backflow Based on a Combined Driving Waveform for Electrowetting Displays.
    Long Z; Yi Z; Zhang H; Lv J; Liu L; Chi F; Shui L; Zhang C
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrowetting-induced oil film entrapment and instability.
    Staicu A; Mugele F
    Phys Rev Lett; 2006 Oct; 97(16):167801. PubMed ID: 17155434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration of terahertz radiation through a conically tapered aperture.
    Nguyen TD; Vardeny ZV; Nahata A
    Opt Express; 2010 Nov; 18(24):25441-8. PubMed ID: 21164891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel optical switch with a reconfigurable dielectric liquid droplet.
    Ren H; Xu S; Ren D; Wu ST
    Opt Express; 2011 Jan; 19(3):1985-90. PubMed ID: 21369014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First fabrication of electrowetting display by using pigment-in-oil driving pixels.
    Lee PT; Chiu CW; Lee TM; Chang TY; Wu MT; Cheng WY; Kuo SW; Lin JJ
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5914-20. PubMed ID: 23796039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light trapping cavity enhanced light transmission through a single sub-wavelength aperture in a metal film.
    Olkkonen J
    Opt Express; 2009 Dec; 17(26):23992-4001. PubMed ID: 20052110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable optofluidic slit aperture.
    Schuhladen S; Banerjee K; Stürmer M; Müller P; Wallrabe U; Zappe H
    Light Sci Appl; 2016 Jan; 5(1):e16005. PubMed ID: 30167111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aperture Ratio Improvement by Optimizing the Voltage Slope and Reverse Pulse in the Driving Waveform for Electrowetting Displays.
    Yi Z; Feng W; Wang L; Liu L; Lin Y; He W; Shui L; Zhang C; Zhang Z; Zhou G
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot.
    Li JJ; Zhu KD
    Nanotechnology; 2010 May; 21(20):205501. PubMed ID: 20413838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.