These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21934944)

  • 1. A broadband planar terahertz metamaterial with nested structure.
    Chowdhury DR; Singh R; Reiten M; Chen HT; Taylor AJ; O'Hara JF; Azad AK
    Opt Express; 2011 Aug; 19(17):15817-23. PubMed ID: 21934944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.
    Han NR; Chen ZC; Lim CS; Ng B; Hong MH
    Opt Express; 2011 Apr; 19(8):6990-8. PubMed ID: 21503013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating Fundamental Resonance in Capacitive Coupled Asymmetric Terahertz Metamaterials.
    Rao SJM; Srivastava YK; Kumar G; Roy Chowdhury D
    Sci Rep; 2018 Nov; 8(1):16773. PubMed ID: 30425280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tunable multi-band metamaterial design using micro-split SRR structures.
    Ekmekci E; Topalli K; Akin T; Turhan-Sayan G
    Opt Express; 2009 Aug; 17(18):16046-58. PubMed ID: 19724605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinguishing octane grades in gasoline using terahertz metamaterials.
    Li J; Tian Z; Chen Y; Cao W; Zeng Z
    Appl Opt; 2012 Jun; 51(16):3258-62. PubMed ID: 22695558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sharp Fano resonances in THz metamaterials.
    Singh R; Al-Naib IA; Koch M; Zhang W
    Opt Express; 2011 Mar; 19(7):6312-9. PubMed ID: 21451657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic dipole coupling mechanism in layered terahertz metamaterials.
    Choi J; Jung H; Lee H; Choi H
    Opt Express; 2013 Jul; 21(14):16975-9. PubMed ID: 23938546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
    Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC
    Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates.
    Singh R; Azad AK; Jia QX; Taylor AJ; Chen HT
    Opt Lett; 2011 Apr; 36(7):1230-2. PubMed ID: 21479039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating the plasmon-induced transparency in terahertz metamaterials.
    Li Z; Ma Y; Huang R; Singh R; Gu J; Tian Z; Han J; Zhang W
    Opt Express; 2011 Apr; 19(9):8912-9. PubMed ID: 21643144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the resonance in high-temperature superconducting terahertz metamaterials.
    Chen HT; Yang H; Singh R; O'Hara JF; Azad AK; Trugman SA; Jia QX; Taylor AJ
    Phys Rev Lett; 2010 Dec; 105(24):247402. PubMed ID: 21231556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields.
    Fu X; Zeng X; Cui TJ; Lan C; Guo Y; Zhang HC; Zhang Q
    Sci Rep; 2016 Aug; 6():31274. PubMed ID: 27502844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization insensitive, broadband terahertz metamaterial absorber.
    Grant J; Ma Y; Saha S; Khalid A; Cumming DR
    Opt Lett; 2011 Sep; 36(17):3476-8. PubMed ID: 21886249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs.
    Li C; Chang CC; Zhou Q; Zhang C; Chen HT
    Opt Express; 2017 Oct; 25(21):25842-25852. PubMed ID: 29041247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces.
    Liu Z; Huang CY; Liu H; Zhang X; Lee C
    Opt Express; 2013 Mar; 21(5):6519-25. PubMed ID: 23482222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors.
    Nouman MT; Kim HW; Woo JM; Hwang JH; Kim D; Jang JH
    Sci Rep; 2016 May; 6():26452. PubMed ID: 27194128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta-materials applications in thin- film sensing and sensing liquids properties.
    Labidi M; Tahar JB; Choubani F
    Opt Express; 2011 Jul; 19 Suppl 4():A733-9. PubMed ID: 21747541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terahertz response of microfluidic-jetted three-dimensional flexible metamaterials.
    Hor YL; Szabó Z; Lim HC; Federici JF; Li EP
    Appl Opt; 2010 Mar; 49(8):1179-84. PubMed ID: 20220872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings.
    Wan M; Song Y; Zhang L; Zhou F
    Opt Express; 2015 Oct; 23(21):27361-8. PubMed ID: 26480398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials.
    Cao W; Singh R; Al-Naib IA; He M; Taylor AJ; Zhang W
    Opt Lett; 2012 Aug; 37(16):3366-8. PubMed ID: 23381259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.