These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 21934946)

  • 21. Highly efficient, modal phase-matched second harmonic generation in a double-layered thin film lithium niobate waveguide.
    Du H; Zhang X; Wang L; Chen F
    Opt Express; 2023 Mar; 31(6):9713-9726. PubMed ID: 37157534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-dimensional grating coupler on lithium-niobate-on-insulator for high-efficiency and polarization-independent coupling.
    Chen B; Ruan Z; Chen K; Liu L
    Opt Lett; 2023 Mar; 48(6):1434-1437. PubMed ID: 36946946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate.
    Korkishko YN; Fedorov VA; De Micheli MP; Baldi P; El Hadi K; Leycuras A
    Appl Opt; 1996 Dec; 35(36):7056-60. PubMed ID: 21151307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mode hybridization analysis in thin film lithium niobate strip multimode waveguides.
    Kaushalram A; Hegde G; Talabattula S
    Sci Rep; 2020 Oct; 10(1):16692. PubMed ID: 33028905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thin-film lithium niobate-on-insulator waveguides fabricated on silicon wafer by room-temperature bonding method with silicon nanoadhesive layer.
    Takigawa R; Asano T
    Opt Express; 2018 Sep; 26(19):24413-24421. PubMed ID: 30469560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High performance fully etched isotropic microring resonators in thin-film lithium niobate on insulator platform.
    Bahadori M; Yang Y; Goddard LL; Gong S
    Opt Express; 2019 Jul; 27(15):22025-22039. PubMed ID: 31510266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thin-ridge Silicon-on-Insulator waveguides with directional control of lateral leakage radiation.
    Dalvand N; Nguyen TG; Tummidi RS; Koch TL; Mitchell A
    Opt Express; 2011 Mar; 19(6):5635-43. PubMed ID: 21445204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical microring resonators in fluorineimplanted lithium niobate.
    Majkic A; Koechlin M; Poberaj G; Günter P
    Opt Express; 2008 Jun; 16(12):8769-79. PubMed ID: 18545590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Few-cycle solitons and supercontinuum generation with cascaded quadratic nonlinearities in unpoled lithium niobate ridge waveguides.
    Guo H; Zeng X; Zhou B; Bache M
    Opt Lett; 2014 Mar; 39(5):1105-8. PubMed ID: 24690682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation.
    Geiss R; Saravi S; Sergeyev A; Diziain S; Setzpfandt F; Schrempel F; Grange R; Kley EB; Tünnermann A; Pertsch T
    Opt Lett; 2015 Jun; 40(12):2715-8. PubMed ID: 26076244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-compact, broadband adiabatic passage optical couplers in thin-film lithium niobate on insulator waveguides.
    Lin YX; Younesi M; Chung HP; Chiu HK; Geiss R; Tseng QH; Setzpfandt F; Pertsch T; Chen YH
    Opt Express; 2021 Aug; 29(17):27362-27372. PubMed ID: 34615154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides.
    Ako T; Hope A; Nguyen T; Mitchell A; Bogaerts W; Neyts K; Beeckman J
    Opt Express; 2015 Feb; 23(3):2846-56. PubMed ID: 25836145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation.
    Pafchek R; Tummidi R; Li J; Webster MA; Chen E; Koch TL
    Appl Opt; 2009 Feb; 48(5):958-63. PubMed ID: 19209210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Planar coupling to high-Q lithium niobate disk resonators.
    Nunzi Conti G; Berneschi S; Cosi F; Pelli S; Soria S; Righini GC; Dispenza M; Secchi A
    Opt Express; 2011 Feb; 19(4):3651-6. PubMed ID: 21369190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching.
    Hartung H; Kley EB; Tünnermann A; Gischkat T; Schrempel F; Wesch W
    Opt Lett; 2008 Oct; 33(20):2320-2. PubMed ID: 18923609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness.
    Wu R; Wang M; Xu J; Qi J; Chu W; Fang Z; Zhang J; Zhou J; Qiao L; Chai Z; Lin J; Cheng Y
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30404137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broadband and highly efficient quadratic interactions in double-slot lithium niobate waveguides through phase matching.
    Kou JL; Wang Q; Yu ZY; Xu F; Lu YQ
    Opt Lett; 2011 Jul; 36(13):2533-5. PubMed ID: 21725470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved cascaded sum and difference frequency generation-based wavelength converters in low-loss quasi-phase-matched lithium niobate waveguides.
    Tehranchi A; Kashyap R
    Appl Opt; 2009 Nov; 48(31):G143-7. PubMed ID: 19881636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simplified analysis and structural design for ridge mos optical waveguides.
    Ma C; Liu S
    Appl Opt; 1990 Oct; 29(30):4435-40. PubMed ID: 20577406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe.
    Li S; Cai L; Wang Y; Jiang Y; Hu H
    Opt Express; 2015 Sep; 23(19):24212-9. PubMed ID: 26406627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.