BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21934982)

  • 1. Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities.
    Zhu J; Özdemir ŞK; He L; Chen DR; Yang L
    Opt Express; 2011 Aug; 19(17):16195-206. PubMed ID: 21934982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting single viruses and nanoparticles using whispering gallery microlasers.
    He L; Ozdemir SK; Zhu J; Kim W; Yang L
    Nat Nanotechnol; 2011 Jun; 6(7):428-32. PubMed ID: 21706025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser.
    Shopova SI; Rajmangal R; Nishida Y; Arnold S
    Rev Sci Instrum; 2010 Oct; 81(10):103110. PubMed ID: 21034078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single virus detection from the reactive shift of a whispering-gallery mode.
    Vollmer F; Arnold S; Keng D
    Proc Natl Acad Sci U S A; 2008 Dec; 105(52):20701-4. PubMed ID: 19075225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiwavelength transmission spectroscopy revisited for the characterization of the protein and polystyrene nanoparticle mixtures.
    Serebrennikova YM; Roth A; Huffman DE; Smith JM; Lindon JN; García-Rubio LH
    Appl Spectrosc; 2013 Feb; 67(2):196-203. PubMed ID: 23622439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the hydrodynamic size of nanoparticles in aqueous media using batch-mode dynamic light scattering.
    Hackley VA; Clogston JD
    Methods Mol Biol; 2011; 697():35-52. PubMed ID: 21116952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles.
    Driskell JD; Jones CA; Tompkins SM; Tripp RA
    Analyst; 2011 Aug; 136(15):3083-90. PubMed ID: 21666913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size.
    Pace HE; Rogers NJ; Jarolimek C; Coleman VA; Gray EP; Higgins CP; Ranville JF
    Environ Sci Technol; 2012 Nov; 46(22):12272-80. PubMed ID: 22780106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiwavelength transmission spectroscopy revisited for the characterization of the protein and polystyrene nanoparticle interactions.
    Serebrennikova YM; Roth A; Huffman DE; Smith JM; Lindon JN; Garcia-Rubio LH
    Appl Spectrosc; 2013 Jan; 67(1):86-92. PubMed ID: 23317675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy.
    McLeod E; Dincer TU; Veli M; Ertas YN; Nguyen C; Luo W; Greenbaum A; Feizi A; Ozcan A
    ACS Nano; 2015 Mar; 9(3):3265-73. PubMed ID: 25688665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-interaction nanoparticle spectroscopy: a nanoparticle-based protein interaction assay.
    Tessier PM; Jinkoji J; Cheng YC; Prentice JL; Lenhoff AM
    J Am Chem Soc; 2008 Mar; 130(10):3106-12. PubMed ID: 18271584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superparamagnetic nanoparticle-polystyrene bead conjugates as pathogen capture mimics: a parametric study of factors affecting capture efficiency and specificity.
    Kell AJ; Somaskandan K; Stewart G; Bergeron MG; Simard B
    Langmuir; 2008 Apr; 24(7):3493-502. PubMed ID: 18290685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatically tuned interactions in silica microsphere-polystyrene nanoparticle mixtures.
    Chan AT; Lewis JA
    Langmuir; 2005 Sep; 21(19):8576-9. PubMed ID: 16142928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and size measurement of individual hemozoin nanocrystals in aquatic environment using a whispering gallery mode resonator.
    Kim W; Ozdemir SK; Zhu J; Faraz M; Coban C; Yang L
    Opt Express; 2012 Dec; 20(28):29426-46. PubMed ID: 23388770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New preparation method of gold nanoparticles on SiO2.
    Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM
    J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capabilities of single particle inductively coupled plasma mass spectrometry for the size measurement of nanoparticles: a case study on gold nanoparticles.
    Liu J; Murphy KE; MacCuspie RI; Winchester MR
    Anal Chem; 2014 Apr; 86(7):3405-14. PubMed ID: 24575780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size.
    Nath N; Chilkoti A
    Anal Chem; 2004 Sep; 76(18):5370-8. PubMed ID: 15362894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size measurement of nanoparticles using atomic force microscopy.
    Grobelny J; DelRio FW; Pradeep N; Kim DI; Hackley VA; Cook RF
    Methods Mol Biol; 2011; 697():71-82. PubMed ID: 21116955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity.
    Jin WL; Yi X; Hu YW; Li BB; Xiao YF
    Appl Opt; 2013 Jan; 52(2):155-61. PubMed ID: 23314630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size- and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C virus RNA.
    Griffin J; Singh AK; Senapati D; Rhodes P; Mitchell K; Robinson B; Yu E; Ray PC
    Chemistry; 2009; 15(2):342-51. PubMed ID: 19035615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.