These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 21935053)
1. Detailed balance model for intermediate band solar cells with photon conservation. Lin CC; Liu WL; Shih CY Opt Express; 2011 Aug; 19(18):16927-33. PubMed ID: 21935053 [TBL] [Abstract][Full Text] [Related]
2. The generalized Shockley-Queisser limit for nanostructured solar cells. Xu Y; Gong T; Munday JN Sci Rep; 2015 Sep; 5():13536. PubMed ID: 26329479 [TBL] [Abstract][Full Text] [Related]
3. Detailed balance analysis of vertical GaAs nanowire array solar cells: exceeding the Shockley Queisser limit. Haghanifar S; Leu PW Opt Express; 2022 May; 30(10):16145-16158. PubMed ID: 36221465 [TBL] [Abstract][Full Text] [Related]
4. Towards improved photovoltaic conversion using dilute magnetic semiconductors (abstract only). Olsson P; Guillemoles JF; Domain C J Phys Condens Matter; 2008 Feb; 20(6):064226. PubMed ID: 21693888 [TBL] [Abstract][Full Text] [Related]
5. Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells. Zhang Y; Yam C; Schatz GC J Phys Chem Lett; 2016 May; 7(10):1852-8. PubMed ID: 27136049 [TBL] [Abstract][Full Text] [Related]
6. Numerical simulation of the effect of recombination centres and traps created by electron irradiation on the performance degradation of GaAs solar cells. Meftah AF; Sengouga N; Belghachi A; Meftah AM J Phys Condens Matter; 2009 May; 21(21):215802. PubMed ID: 21825561 [TBL] [Abstract][Full Text] [Related]
7. Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites. Hosokawa H; Tamaki R; Sawada T; Okonogi A; Sato H; Ogomi Y; Hayase S; Okada Y; Yano T Nat Commun; 2019 Jan; 10(1):43. PubMed ID: 30626874 [TBL] [Abstract][Full Text] [Related]
8. Light absorption and emission in nanowire array solar cells. Kupec J; Stoop RL; Witzigmann B Opt Express; 2010 Dec; 18(26):27589-605. PubMed ID: 21197033 [TBL] [Abstract][Full Text] [Related]
9. Theory of plasmonic quantum-dot-based intermediate band solar cells. Foroutan S; Baghban H Appl Opt; 2016 May; 55(13):3405-12. PubMed ID: 27140348 [TBL] [Abstract][Full Text] [Related]
10. Demonstration of a GaSb/GaAs Quantum Dot Intermediate Band Solar Cell Operating at Maximum Power Point. Ramiro I; Villa J; Hwang J; Martin AJ; Millunchick J; Phillips J; Martí A Phys Rev Lett; 2020 Dec; 125(24):247703. PubMed ID: 33412043 [TBL] [Abstract][Full Text] [Related]
11. Group-IIIA element doped BaSnS Xue Y; Lin C; Zhong J; Huang D; Persson C Phys Chem Chem Phys; 2024 Mar; 26(10):8380-8389. PubMed ID: 38404232 [TBL] [Abstract][Full Text] [Related]
12. Performance optimization of In(Ga)As quantum dot intermediate band solar cells. Yang G; Liu W; Bao Y; Chen X; Ji C; Wei B; Yang F; Wang X Discov Nano; 2023 Apr; 18(1):67. PubMed ID: 37382764 [TBL] [Abstract][Full Text] [Related]
13. Influence of Geometrical Shape on the Characteristics of the Multiple InN/In Aouami AE; Pérez LM; Feddi K; El-Yadri M; Dujardin F; Suazo MJ; Laroze D; Courel M; Feddi EM Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067706 [TBL] [Abstract][Full Text] [Related]
14. Quantum heat engine power can be increased by noise-induced coherence. Scully MO; Chapin KR; Dorfman KE; Kim MB; Svidzinsky A Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15097-100. PubMed ID: 21876187 [TBL] [Abstract][Full Text] [Related]
15. Solar thermal harvesting for enhanced photocatalytic reactions. Hashemi SM; Choi JW; Psaltis D Phys Chem Chem Phys; 2014 Mar; 16(11):5137-41. PubMed ID: 24480846 [TBL] [Abstract][Full Text] [Related]
16. Performance-limiting factors for GaAs-based single nanowire photovoltaics. Wang X; Khan MR; Lundstrom M; Bermel P Opt Express; 2014 Mar; 22 Suppl 2():A344-58. PubMed ID: 24922244 [TBL] [Abstract][Full Text] [Related]
17. Performance-limiting factors for GaAs-based single nanowire photovoltaics. Wang X; Khan MR; Lundstrom M; Bermel P Opt Express; 2014 Mar; 22(5):A344-58. PubMed ID: 24800291 [TBL] [Abstract][Full Text] [Related]
18. Intrinsic and extrinsic drops in open-circuit voltage and conversion efficiency in solar cells with quantum dots embedded in host materials. Zhu L; Akiyama H; Kanemitsu Y Sci Rep; 2018 Aug; 8(1):11704. PubMed ID: 30076353 [TBL] [Abstract][Full Text] [Related]
19. Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Potscavage WJ; Sharma A; Kippelen B Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653 [TBL] [Abstract][Full Text] [Related]
20. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Heremans P; Cheyns D; Rand BP Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]