These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21935053)

  • 21. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films.
    Leschkies KS; Beatty TJ; Kang MS; Norris DJ; Aydil ES
    ACS Nano; 2009 Nov; 3(11):3638-48. PubMed ID: 19842707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficiency of InN/InGaN/GaN Intermediate-Band Solar Cell under the Effects of Hydrostatic Pressure, In-Compositions, Built-in-Electric Field, Confinement, and Thickness.
    Abboudi H; El Ghazi H; En-Nadir R; Basyooni-M Kabatas MA; Jorio A; Zorkani I
    Nanomaterials (Basel); 2024 Jan; 14(1):. PubMed ID: 38202559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination.
    Feenstra J; Six IF; Asselbergs MA; van Leest RH; de Wild J; Meijerink A; Schropp RE; Rowan AE; Schermer JJ
    Phys Chem Chem Phys; 2015 May; 17(17):11234-43. PubMed ID: 25834845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit.
    Mann SA; Grote RR; Osgood RM; Alù A; Garnett EC
    ACS Nano; 2016 Sep; 10(9):8620-31. PubMed ID: 27580421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alternating polyfluorenes collect solar light in polymer photovoltaics.
    Inganäs O; Zhang F; Andersson MR
    Acc Chem Res; 2009 Nov; 42(11):1731-9. PubMed ID: 19835413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Directionally selective light trapping in a germanium solar cell.
    Peters M; Ulbrich C; Goldschmidt JC; Fernandez J; Siefer G; Bläsi B
    Opt Express; 2011 Mar; 19 Suppl 2():A136-45. PubMed ID: 21445215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of carrier screening and band filling effects on efficiency droop of InGaN light emitting diodes.
    Wang L; Lu C; Lu J; Liu L; Liu N; Chen Y; Zhang Y; Gu E; Hu X
    Opt Express; 2011 Jul; 19(15):14182-7. PubMed ID: 21934781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments.
    Safi TS; Munday JN
    Opt Express; 2015 Sep; 23(19):A1120-8. PubMed ID: 26406742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High Efficient Solar Cell Based on Heterostructure Constructed by Graphene and GaAs Quantum Wells.
    Yu X; Dai Y; Lu Y; Liu C; Yan Y; Shen R; Yang Z; Feng L; Sun L; Liu Y; Lin S
    Adv Sci (Weinh); 2023 Jan; 10(2):e2204058. PubMed ID: 36394152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New strategies for colloidal-quantum-dot-based intermediate-band solar cells.
    Califano M; Skibinsky-Gitlin ES; Gómez-Campos FM; Rodríguez-Bolívar S
    J Chem Phys; 2019 Oct; 151(15):154101. PubMed ID: 31640383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermocleavable materials for polymer solar cells with high open circuit voltage-a comparative study.
    Tromholt T; Gevorgyan SA; Jørgensen M; Krebs FC; Sylvester-Hvid KO
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2768-77. PubMed ID: 20356155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maximum Theoretical Efficiency Limit of Photovoltaic Devices: Effect of Band Structure on Excited State Entropy.
    Osterloh FE
    J Phys Chem Lett; 2014 Oct; 5(19):3354-9. PubMed ID: 26278444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ab initio study on noncompensated CrO codoping of GaN for enhanced solar energy conversion.
    Pan H; Gu B; Eres G; Zhang Z
    J Chem Phys; 2010 Mar; 132(10):104501. PubMed ID: 20232965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Colloidal Nanoparticles for Intermediate Band Solar Cells.
    Vörös M; Galli G; Zimanyi GT
    ACS Nano; 2015 Jul; 9(7):6882-90. PubMed ID: 26042468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells.
    Zhou H; Yang L; Stoneking S; You W
    ACS Appl Mater Interfaces; 2010 May; 2(5):1377-83. PubMed ID: 20438089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Colloidal PbS quantum dot solar cells with high fill factor.
    Zhao N; Osedach TP; Chang LY; Geyer SM; Wanger D; Binda MT; Arango AC; Bawendi MG; Bulovic V
    ACS Nano; 2010 Jul; 4(7):3743-52. PubMed ID: 20590129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intermediate-band dynamics of quantum dots solar cell in concentrator photovoltaic modules.
    Sogabe T; Shoji Y; Ohba M; Yoshida K; Tamaki R; Hong HF; Wu CH; Kuo CT; Tomić S; Okada Y
    Sci Rep; 2014 Apr; 4():4792. PubMed ID: 24762433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding and Weakening Photon Recycling in Solar Cells to Approach the Radiative Limit.
    Zheng H; Liu Q; Wang Y; Hu J; Zou D; Hou S
    Adv Mater; 2024 Jul; 36(28):e2405063. PubMed ID: 38658048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.