These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21935107)

  • 1. Design principles for infrared wide-angle perfect absorber based on plasmonic structure.
    Pu M; Hu C; Wang M; Huang C; Zhao Z; Wang C; Feng Q; Luo X
    Opt Express; 2011 Aug; 19(18):17413-20. PubMed ID: 21935107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial.
    Bai Y; Zhao L; Ju D; Jiang Y; Liu L
    Opt Express; 2015 Apr; 23(7):8670-80. PubMed ID: 25968705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array.
    Zhang B; Zhao Y; Hao Q; Kiraly B; Khoo IC; Chen S; Huang TJ
    Opt Express; 2011 Aug; 19(16):15221-8. PubMed ID: 21934885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.
    Jiang ZH; Yun S; Toor F; Werner DH; Mayer TS
    ACS Nano; 2011 Jun; 5(6):4641-7. PubMed ID: 21456579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array.
    Feng R; Ding W; Liu L; Chen L; Qiu J; Chen G
    Opt Express; 2014 Mar; 22 Suppl 2():A335-43. PubMed ID: 24922243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array.
    Feng R; Ding W; Liu L; Chen L; Qiu J; Chen G
    Opt Express; 2014 Mar; 22(5):A335-43. PubMed ID: 24800290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-sided polarization-independent plasmonic absorber at near-infrared region.
    Dai S; Zhao D; Li Q; Qiu M
    Opt Express; 2013 Jun; 21(11):13125-33. PubMed ID: 23736566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared perfect absorber based on nanowire metamaterial cavities.
    He Y; Deng H; Jiao X; He S; Gao J; Yang X
    Opt Lett; 2013 Apr; 38(7):1179-81. PubMed ID: 23546283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-Independent Perfect Optical Metamaterial Absorber as a Glucose Sensor in Food Industry Applications.
    Vafapour Z
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):622-627. PubMed ID: 31329124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Dual-Band Terahertz Perfect Metamaterial Absorber Based on Circuit Theory.
    Liu Z; Guo L; Zhang Q
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32911747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple Structure for an Independently Tunable Infrared Absorber Based on a Non-Concentric Graphene Nanodisk.
    Yu K; Shen P; Zhang W; Xiong X; Zhang J; Liu Y
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization-independent wide-angle triple-band metamaterial absorber.
    Shen X; Cui TJ; Zhao J; Ma HF; Jiang WX; Li H
    Opt Express; 2011 May; 19(10):9401-7. PubMed ID: 21643197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance.
    Zhang C; Huang C; Pu M; Song J; Zhao Z; Wu X; Luo X
    Sci Rep; 2017 Jul; 7(1):5652. PubMed ID: 28720892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance.
    Zheng HY; Jin XR; Park JW; Lu YH; Rhee JY; Jang WH; Cheong H; Lee YP
    Opt Express; 2012 Oct; 20(21):24002-9. PubMed ID: 23188367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of a broadband refractory metal metamaterial absorber at terahertz frequencies.
    Hu D; Wang H; Tang Z; Zhang X
    Appl Opt; 2016 Jul; 55(19):5257-62. PubMed ID: 27409218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A terahertz polarization insensitive dual band metamaterial absorber.
    Ma Y; Chen Q; Grant J; Saha SC; Khalid A; Cumming DR
    Opt Lett; 2011 Mar; 36(6):945-7. PubMed ID: 21403737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wafer-scale metamaterials for polarization-insensitive and dual-band perfect absorption.
    Liu J; Zhu M; Zhang N; Zhang H; Zhou Y; Sun S; Yi N; Gao S; Song Q; Xiao S
    Nanoscale; 2015 Dec; 7(45):18914-7. PubMed ID: 26525777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.