These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21935190)

  • 1. Plasmonic crystal defect nanolaser.
    Lakhani AM; Kim MK; Lau EK; Wu MC
    Opt Express; 2011 Sep; 19(19):18237-45. PubMed ID: 21935190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-loss surface-plasmonic nanobeam cavities.
    Kim MK; Lee SH; Choi M; Ahn BH; Park N; Lee YH; Min B
    Opt Express; 2010 May; 18(11):11089-96. PubMed ID: 20588966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid photonic-plasmonic crystal nanocavities.
    Yang X; Ishikawa A; Yin X; Zhang X
    ACS Nano; 2011 Apr; 5(4):2831-8. PubMed ID: 21384850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking plasmonic nanolaser emission by selective extraction of electromagnetic near-field from photonic microcavity.
    Deng Q; Kang M; Zheng D; Zhang S; Xu H
    Nanoscale; 2018 Apr; 10(16):7431-7439. PubMed ID: 29637981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-exciton coupling dynamics and plasmonic lasing in a core-shell nanocavity.
    Wang R; Xu C; You D; Wang X; Chen J; Shi Z; Cui Q; Qiu T
    Nanoscale; 2021 Apr; 13(14):6780-6785. PubMed ID: 33885480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lasing action in strongly coupled plasmonic nanocavity arrays.
    Zhou W; Dridi M; Suh JY; Kim CH; Co DT; Wasielewski MR; Schatz GC; Odom TW
    Nat Nanotechnol; 2013 Jul; 8(7):506-11. PubMed ID: 23770807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate.
    Huang C; Sun W; Fan Y; Wang Y; Gao Y; Zhang N; Wang K; Liu S; Wang S; Xiao S; Song Q
    ACS Nano; 2018 Apr; 12(4):3865-3874. PubMed ID: 29641176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers.
    Chen X; Bhola B; Huang Y; Ho ST
    Opt Express; 2010 Aug; 18(16):17220-38. PubMed ID: 20721111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purified plasmonic lasing with strong polarization selectivity by reflection.
    Li G; Liu X; Wang X; Yuan Y; Sum TC; Xiong Q
    Opt Express; 2015 Jun; 23(12):15657-69. PubMed ID: 26193545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microassembly of semiconductor three-dimensional photonic crystals.
    Aoki K; Miyazaki HT; Hirayama H; Inoshita K; Baba T; Sakoda K; Shinya N; Aoyagi Y
    Nat Mater; 2003 Feb; 2(2):117-21. PubMed ID: 12612697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-Beam-Driven III-Nitride Plasmonic Nanolasers in the Deep-UV and Visible Region.
    Tao T; Zhi T; Liu B; Chen P; Xie Z; Zhao H; Ren F; Chen D; Zheng Y; Zhang R
    Small; 2020 Jan; 16(1):e1906205. PubMed ID: 31793750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons.
    Hu B; Wang QJ; Zhang Y
    Opt Lett; 2012 Jun; 37(11):1895-7. PubMed ID: 22660065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Localized Surface Plasmon Nanolasers via Strong Coupling.
    Liao JW; Huang ZT; Wu CH; Gagrani N; Tan HH; Jagadish C; Chen KP; Lu TC
    Nano Lett; 2023 May; 23(10):4359-4366. PubMed ID: 37155142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.
    Cao W; Muñoz A; Palffy-Muhoray P; Taheri B
    Nat Mater; 2002 Oct; 1(2):111-3. PubMed ID: 12618825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of an ultrafast plasmonic nanolaser for high-intensity broadband emission operating at room temperature.
    Zhou P; Jin L; Liang K; Liang X; Li J; Deng X; Wang Y; Guo J; Yu L; Zhang J
    Opt Lett; 2024 Jun; 49(11):2930-2933. PubMed ID: 38824295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array.
    Zhang C; Lu Y; Ni Y; Li M; Mao L; Liu C; Zhang D; Ming H; Wang P
    Nano Lett; 2015 Feb; 15(2):1382-7. PubMed ID: 25622291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic crystal for graphene plasmons.
    Xiong L; Forsythe C; Jung M; McLeod AS; Sunku SS; Shao YM; Ni GX; Sternbach AJ; Liu S; Edgar JH; Mele EJ; Fogler MM; Shvets G; Dean CR; Basov DN
    Nat Commun; 2019 Oct; 10(1):4780. PubMed ID: 31636265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress in Nanolaser Technology.
    Jeong KY; Hwang MS; Kim J; Park JS; Lee JM; Park HG
    Adv Mater; 2020 Dec; 32(51):e2001996. PubMed ID: 32945000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip natural assembly of silicon photonic bandgap crystals.
    Vlasov YA; Bo XZ; Sturm JC; Norris DJ
    Nature; 2001 Nov; 414(6861):289-93. PubMed ID: 11713524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.