These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21935215)

  • 1. THz propagation in kagome hollow-core microstructured fibers.
    Anthony J; Leonhardt R; Leon-Saval SG; Argyros A
    Opt Express; 2011 Sep; 19(19):18470-8. PubMed ID: 21935215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance.
    Rozé M; Ung B; Mazhorova A; Walther M; Skorobogatiy M
    Opt Express; 2011 May; 19(10):9127-38. PubMed ID: 21643167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers.
    Li H; Ren G; Zhu B; Gao Y; Yin B; Wang J; Jian S
    Opt Lett; 2017 Jan; 42(2):179-182. PubMed ID: 28081067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid hollow core fibers with embedded wires as THz waveguides.
    Anthony J; Leonhardt R; Argyros A
    Opt Express; 2013 Feb; 21(3):2903-12. PubMed ID: 23481748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique.
    Dupuis A; Mazhorova A; Désévédavy F; Rozé M; Skorobogatiy M
    Opt Express; 2010 Jun; 18(13):13813-28. PubMed ID: 20588514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber.
    Wang YY; Wheeler NV; Couny F; Roberts PJ; Benabid F
    Opt Lett; 2011 Mar; 36(5):669-71. PubMed ID: 21368943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber-based, hybrid terahertz spectrometer using dual fiber combs.
    Yasui T; Nose M; Ihara A; Kawamoto K; Yokoyama S; Inaba H; Minoshima K; Araki T
    Opt Lett; 2010 May; 35(10):1689-91. PubMed ID: 20479851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission of terahertz radiation using a microstructured polymer optical fiber.
    Ponseca CS; Pobre R; Estacio E; Sarukura N; Argyros A; Large MC; van Eijkelenborg MA
    Opt Lett; 2008 May; 33(9):902-4. PubMed ID: 18451933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Singlemoded THz guidance in bendable TOPAS suspended-core fiber directly drawn from a 3D printer.
    Talataisong W; Gorecki J; Ismaeel R; Beresna M; Schwendemann D; Apostolopoulos V; Brambilla G
    Sci Rep; 2020 Jul; 10(1):11045. PubMed ID: 32632256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallic and 3D-printed dielectric helical terahertz waveguides.
    Vogt DW; Anthony J; Leonhardt R
    Opt Express; 2015 Dec; 23(26):33359-69. PubMed ID: 26832000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Progress in application of THz-TDS to protein study].
    Ma XJ; Zhao HW; Dai B; Ge M
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2237-42. PubMed ID: 19123380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band.
    Navarro-Cía M; Vitiello MS; Bledt CM; Melzer JE; Harrington JA; Mitrofanov O
    Opt Express; 2013 Oct; 21(20):23748-55. PubMed ID: 24104287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy.
    Han J; Zhang W; Chen W; Thamizhmani L; Azad AK; Zhu Z
    J Phys Chem B; 2006 Feb; 110(5):1989-93. PubMed ID: 16471773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terahertz quasi time domain spectroscopy.
    Scheller M; Koch M
    Opt Express; 2009 Sep; 17(20):17723-33. PubMed ID: 19907558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy.
    Ho IC; Guo X; Zhang XC
    Opt Express; 2010 Feb; 18(3):2872-83. PubMed ID: 20174116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suspended hollow core fiber for terahertz wave guiding.
    Jiang X; Chen D; Hu G
    Appl Opt; 2013 Feb; 52(4):770-4. PubMed ID: 23385918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance.
    Chen NN; Liang J; Ren LY
    Appl Opt; 2013 Jul; 52(21):5297-302. PubMed ID: 23872779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on low-loss hollow-core anti-resonant terahertz fiber.
    Li L; Lin D; Meng F; Zhao Y; Cui Y; Cao Y; Liu H; Mu H; Niu Y; He J; Liang S
    Appl Opt; 2023 Jul; 62(21):5778-5785. PubMed ID: 37707196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed low-loss THz waveguide based on Kagome photonic crystal structure.
    Yang J; Zhao J; Gong C; Tian H; Sun L; Chen P; Lin L; Liu W
    Opt Express; 2016 Oct; 24(20):22454-22460. PubMed ID: 27828318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bendable, low-loss Topas fibers for the terahertz frequency range.
    Nielsen K; Rasmussen HK; Adam AJ; Planken PC; Bang O; Jepsen PU
    Opt Express; 2009 May; 17(10):8592-601. PubMed ID: 19434192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.