These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 21935253)

  • 1. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink.
    Yeo CI; Song YM; Jang SJ; Lee YT
    Opt Express; 2011 Sep; 19 Suppl 5():A1109-16. PubMed ID: 21935253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antireflective disordered subwavelength structure on GaAs using spin-coated Ag ink mask.
    Yeo CI; Kwon JH; Jang SJ; Lee YT
    Opt Express; 2012 Aug; 20(17):19554-62. PubMed ID: 23038597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light trapping enhancement induced by bimetallic non-alloyed nanoparticles on a disordered subwavelength flexible thin film crystalline silicon substrate using metal-assisted chemical etching.
    Lee SK; Tan CL; Lee YT
    Opt Lett; 2017 Feb; 42(3):431-434. PubMed ID: 28146494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications.
    Leem JW; Song YM; Yu JS
    Opt Express; 2011 Dec; 19(27):26308-17. PubMed ID: 22274215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells.
    Leem JW; Song YM; Yu JS
    Opt Express; 2011 Sep; 19 Suppl 5():A1155-64. PubMed ID: 21935259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles.
    Kim JB; Yeo CI; Lee YH; Ravindran S; Lee YT
    Nanoscale Res Lett; 2014 Feb; 9(1):54. PubMed ID: 24484636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband antireflection on the silicon surface realized by Ag nanoparticle-patterned black silicon.
    Wang Y; Liu YP; Liang HL; Mei ZX; Du XL
    Phys Chem Chem Phys; 2013 Feb; 15(7):2345-50. PubMed ID: 23296192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications.
    Yeo C; Kim JB; Song YM; Lee YT
    Nanoscale Res Lett; 2013 Apr; 8(1):159. PubMed ID: 23566597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disordered antireflective subwavelength structures using Ag nanoparticles on fused silica windows.
    Shang P; Xiong SM; Deng QL; Shi LF; Zhang M
    Appl Opt; 2014 Oct; 53(29):6789-96. PubMed ID: 25322384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired periodic pinecone-shaped Si subwavelength nanostructures for broadband and omnidirectional antireflective surface.
    Leem JW; Yu JS
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7932-8. PubMed ID: 23421159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antireflective hydrophobic si subwavelength structures using thermally dewetted Ni/SiO2 nanomask patterns.
    Joo DH; Leem JW; Yu JS
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10130-5. PubMed ID: 22413355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection.
    Wang HP; Lai KY; Lin YR; Lin CA; He JH
    Langmuir; 2010 Aug; 26(15):12855-8. PubMed ID: 20666420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple approach to wafer-scale self-cleaning antireflective silicon surfaces.
    Qi D; Lu N; Xu H; Yang B; Huang C; Xu M; Gao L; Wang Z; Chi L
    Langmuir; 2009 Jul; 25(14):7769-72. PubMed ID: 19537739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles.
    Park GC; Song YM; Ha JH; Lee YT
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6152-6. PubMed ID: 22121676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications.
    Leem JW; Song YM; Yu JS
    Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching.
    Ye X; Jiang X; Huang J; Geng F; Sun L; Zu X; Wu W; Zheng W
    Sci Rep; 2015 Aug; 5():13023. PubMed ID: 26268896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antireflective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes.
    Hung YJ; Lee SL; Wu KC; Tai Y; Pan YT
    Opt Express; 2011 Aug; 19(17):15792-802. PubMed ID: 21934941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband and omnidirectional light harvesting enhancement of fluorescent SiC.
    Ou Y; Jokubavicius V; Hens P; Kaiser M; Wellmann P; Yakimova R; Syväjärvi M; Ou H
    Opt Express; 2012 Mar; 20(7):7575-9. PubMed ID: 22453436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures.
    Min WL; Jiang P; Jiang B
    Nanotechnology; 2008 Nov; 19(47):475604. PubMed ID: 21836279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized antireflective silicon nanostructure arrays using nanosphere lithography.
    Lee D; Bae J; Hong S; Yang H; Kim YB
    Nanotechnology; 2016 May; 27(21):215302. PubMed ID: 27087196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.