These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21935556)

  • 1. Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope.
    Pang S; Han C; Lee LM; Yang C
    Lab Chip; 2011 Nov; 11(21):3698-702. PubMed ID: 21935556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging.
    Cui X; Lee LM; Heng X; Zhong W; Sternberg PW; Psaltis D; Yang C
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):10670-5. PubMed ID: 18663227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of Fresnel zone plate based projection in optofluidic microscopy.
    Wu J; Cui X; Lee LM; Yang C
    Opt Express; 2008 Sep; 16(20):15595-602. PubMed ID: 18825198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate.
    Pang S; Cui X; DeModena J; Wang YM; Sternberg P; Yang C
    Lab Chip; 2010 Feb; 10(4):411-4. PubMed ID: 20126679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable focusing properties using optofluidic Fresnel zone plates.
    Shi Y; Zhu XQ; Liang L; Yang Y
    Lab Chip; 2016 Nov; 16(23):4554-4559. PubMed ID: 27785508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-pixel resolving optofluidic microscope for on-chip cell imaging.
    Zheng G; Lee SA; Yang S; Yang C
    Lab Chip; 2010 Nov; 10(22):3125-9. PubMed ID: 20877904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time imaging of exocytotic mucin release and swelling in Calu-3 cells using acridine orange.
    Shumilov D; Popov A; Fudala R; Akopova I; Gryczynski I; Borejdo J; Gryczynski Z; Grygorczyk R
    Methods; 2014 Mar; 66(2):312-24. PubMed ID: 24055436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator.
    Han C; Pang S; Bower DV; Yiu P; Yang C
    Anal Chem; 2013 Feb; 85(4):2356-60. PubMed ID: 23350531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DYNAMICS OF ACRIDINE ORANGE-CELL INTERACTION. II. DYE-INDUCED ULTRASTRUCTURAL CHANGES IN MULTIVESICULAR BODIES (ACRIDINE ORANGE PARTICLES).
    ROBBINS E; MARCUS PI; GONATAS NK
    J Cell Biol; 1964 Apr; 21(1):49-62. PubMed ID: 14154495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optofluidic fluorescent imaging cytometry on a cell phone.
    Zhu H; Mavandadi S; Coskun AF; Yaglidere O; Ozcan A
    Anal Chem; 2011 Sep; 83(17):6641-7. PubMed ID: 21774454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optofluidic on-chip tomography.
    Isikman SO; Bishara W; Zhu H; Ozcan A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8463-6. PubMed ID: 22256312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts.
    Lee LM; Cui X; Yang C
    Biomed Microdevices; 2009 Oct; 11(5):951-8. PubMed ID: 19365730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip.
    Heng X; Erickson D; Baugh LR; Yaqoob Z; Sternberg PW; Psaltis D; Yang C
    Lab Chip; 2006 Oct; 6(10):1274-6. PubMed ID: 17102839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An acridine orange spore germination fluorescence microscopy versus spectral paradox.
    Bruno JG
    J Fluoresc; 2015 Jan; 25(1):211-6. PubMed ID: 25542136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence intensity ratio stereoscopic transform.
    Yun H; Min J; Bang H; Han DC; Lee SG; Lee WG
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6377-81. PubMed ID: 22121719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acridine orange fluorescent microscopy is more sensitive than India ink light microscopy in the rapid detection of cryptococcosis among CrAg positive HIV patients.
    Kwizera R; Akampurira A; Williams D; Boulware DR; Meya DB;
    PLoS One; 2017; 12(7):e0182108. PubMed ID: 28750078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ analysis of apoptosis in Aspergillus nidulans with ethidium bromide and acridine orange.
    Leles SM; Factori R; Rocha CL
    Genet Mol Res; 2013 Aug; 12(3):2895-901. PubMed ID: 24065645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serial imaging of micro-agents and cancer cell spheroids in a microfluidic channel using multicolor fluorescence microscopy.
    Kaya M; Stein F; Rouwkema J; Khalil ISM; Misra S
    PLoS One; 2021; 16(6):e0253222. PubMed ID: 34129617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid diagnosis of malaria by fluorescence microscopy with light microscope and interference filter.
    Kawamoto F
    Lancet; 1991 Jan; 337(8735):200-2. PubMed ID: 1670842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.