BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21935563)

  • 1. Molecular imaging of Cathepsin E-positive tumors in mice using a novel protease-activatable fluorescent probe.
    Abd-Elgaliel WR; Cruz-Monserrate Z; Logsdon CD; Tung CH
    Mol Biosyst; 2011 Dec; 7(12):3207-3213. PubMed ID: 21935563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of pancreatic cancer tumours and precursor lesions by cathepsin E activity in mouse models.
    Cruz-Monserrate Z; Abd-Elgaliel WR; Grote T; Deng D; Ji B; Arumugam T; Wang H; Tung CH; Logsdon CD
    Gut; 2012 Sep; 61(9):1315-22. PubMed ID: 22068166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective detection of Cathepsin E proteolytic activity.
    Abd-Elgaliel WR; Tung CH
    Biochim Biophys Acta; 2010 Sep; 1800(9):1002-8. PubMed ID: 20600629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Monitoring of Multi-Enzyme Activity and Concentration in Tumor Using a Triply Labeled Fluorescent In Vivo Imaging Probe.
    Tam J; Pilozzi A; Mahmood U; Huang X
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32349205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucosamine-linked near-infrared fluorescent probes for imaging of solid tumor xenografts.
    Korotcov AV; Ye Y; Chen Y; Zhang F; Huang S; Lin S; Sridhar R; Achilefu S; Wang PC
    Mol Imaging Biol; 2012 Aug; 14(4):443-51. PubMed ID: 21971932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors.
    Qi S; Miao Z; Liu H; Xu Y; Feng Y; Cheng Z
    Bioconjug Chem; 2012 Jun; 23(6):1149-56. PubMed ID: 22621238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex Vivo and In Vivo Noninvasive Imaging of Epidermal Growth Factor Receptor Inhibition on Colon Tumorigenesis Using Activatable Near-Infrared Fluorescent Probes.
    Ding S; Blue RE; Moorefield E; Yuan H; Lund PK
    Mol Imaging; 2017; 16():1536012117729044. PubMed ID: 28884622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo near infrared fluorescence (NIRF) intravascular molecular imaging of inflammatory plaque, a multimodal approach to imaging of atherosclerosis.
    Calfon MA; Rosenthal A; Mallas G; Mauskapf A; Nudelman RN; Ntziachristos V; Jaffer FA
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21847078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multispectral Photoacoustic Imaging of Tumor Protease Activity with a Gold Nanocage-Based Activatable Probe.
    Liu C; Li S; Gu Y; Xiong H; Wong WT; Sun L
    Mol Imaging Biol; 2018 Dec; 20(6):919-929. PubMed ID: 29736563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor.
    Jaffer FA; Kim DE; Quinti L; Tung CH; Aikawa E; Pande AN; Kohler RH; Shi GP; Libby P; Weissleder R
    Circulation; 2007 May; 115(17):2292-8. PubMed ID: 17420353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo breast cancer characterization imaging using two monoclonal antibodies activatably labeled with near infrared fluorophores.
    Sano K; Mitsunaga M; Nakajima T; Choyke PL; Kobayashi H
    Breast Cancer Res; 2012; 14(2):R61. PubMed ID: 22510481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activatable near-infrared fluorescent probe for in vivo imaging of fibroblast activation protein-alpha.
    Li J; Chen K; Liu H; Cheng K; Yang M; Zhang J; Cheng JD; Zhang Y; Cheng Z
    Bioconjug Chem; 2012 Aug; 23(8):1704-11. PubMed ID: 22812530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes.
    Bremer C; Tung CH; Bogdanov A; Weissleder R
    Radiology; 2002 Mar; 222(3):814-8. PubMed ID: 11867806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo NIRF imaging-guided delivery of a novel NGR-VEGI fusion protein for targeting tumor vasculature.
    Ma W; Li G; Wang J; Yang W; Zhang Y; Conti PS; Chen K
    Amino Acids; 2014 Dec; 46(12):2721-32. PubMed ID: 25182731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular imaging of gastric neoplasia with near-infrared fluorescent activatable probes.
    Ding S; Eric Blue R; Chen Y; Scull B; Kay Lund P; Morgan D
    Mol Imaging; 2012; 11(6):507-15. PubMed ID: 23084251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared fluorescence imaging of lymph nodes using a new enzyme sensing activatable macromolecular optical probe.
    Wunderbaldinger P; Turetschek K; Bremer C
    Eur Radiol; 2003 Sep; 13(9):2206-11. PubMed ID: 12802615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of near-infrared fluorescence imaging using a polymeric nanoparticle-based probe for the diagnosis and therapeutic monitoring of colon cancer.
    Yoon SM; Myung SJ; Kim IW; Do EJ; Ye BD; Ryu JH; Park K; Kim K; Kwon IC; Kim MJ; Moon DH; Yang DH; Kim KJ; Byeon JS; Yang SK; Kim JH
    Dig Dis Sci; 2011 Oct; 56(10):3005-13. PubMed ID: 21465144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a novel L-methyl-methionine-ICG-Der-02 fluorescent probe for in vivo near infrared imaging of tumors.
    Mahounga DM; Shan L; Jie C; Du C; Wan S; Gu Y
    Mol Imaging Biol; 2012 Dec; 14(6):699-707. PubMed ID: 22552743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared optical imaging of protease activity for tumor detection.
    Mahmood U; Tung CH; Bogdanov A; Weissleder R
    Radiology; 1999 Dec; 213(3):866-70. PubMed ID: 10580968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of a Protease Activated Probe for Optical Surgical Navigation.
    Yim JJ; Tholen M; Klaassen A; Sorger J; Bogyo M
    Mol Pharm; 2018 Mar; 15(3):750-758. PubMed ID: 29172524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.