These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21935698)

  • 21. Effects of Eichhornia crassipes and Ceratophyllum demersum on Soil and Water Environments and Nutrient Removal in Wetland Microcosms.
    Sung K; Lee GJ; Munster C
    Int J Phytoremediation; 2015; 17(10):936-44. PubMed ID: 25581097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytoremediation in flooded environments: Dynamics of barium absorption and translocation by Eleocharis acutangula.
    Ferreira AD; Viana DG; Egreja Filho FB; Pires FR; Bonomo R; Martins LF; Pinto Nascimento MC; Silva Cruz LB
    Chemosphere; 2019 Mar; 219():836-844. PubMed ID: 30572235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The uptake of uranium by Eleocharis dulcis (Chinese water chestnut) in the Ranger Uranium Mine constructed wetland filter.
    Overall RA; Parry DL
    Environ Pollut; 2004 Nov; 132(2):307-20. PubMed ID: 15312943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Intensity of nitrification and denitrification in subsurface-flow constructed wetlands].
    Huang J; Wang SH; Yan L; Liu Y; Wang F
    Huan Jing Ke Xue; 2007 Sep; 28(9):1965-9. PubMed ID: 17990540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphate enhanced abiotic and biotic arsenic mobilization in the wetland rhizosphere.
    Zhang Z; Moon HS; Myneni SCB; Jaffé PR
    Chemosphere; 2017 Nov; 187():130-139. PubMed ID: 28846968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of Fe(II), sulphur and phosphate in pilot-scale constructed wetlands treating a sulphate-rich chlorinated hydrocarbon contaminated groundwater.
    Wu S; Chen Z; Braeckevelt M; Seeger EM; Dong R; Kästner M; Paschke H; Hahn A; Kayser G; Kuschk P
    Water Res; 2012 Apr; 46(6):1923-32. PubMed ID: 22289675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic Uptake and Translocation in Plants.
    Li N; Wang J; Song WY
    Plant Cell Physiol; 2016 Jan; 57(1):4-13. PubMed ID: 26454880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vegetation changes and partitioning of selenium in 4-year-old constructed wetlands treating agricultural drainage.
    Lin ZQ; Terry N; Gao S; Mohamed S; Ye ZH
    Int J Phytoremediation; 2010 Mar; 12(3):255-67. PubMed ID: 20734620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maghemite nanoparticles and ferrous sulfate for the stimulation of iron plaque formation and arsenic immobilization in Phragmites australis.
    Pardo T; Martínez-Fernández D; de la Fuente C; Clemente R; Komárek M; Bernal MP
    Environ Pollut; 2016 Dec; 219():296-304. PubMed ID: 27814546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Management of arsenic-accumulated waste from constructed wetland treatment of mountain tap-water.
    Nakwanit S; Visoottiviseth P; Khokiattiwong S; Sangchoom W
    J Hazard Mater; 2011 Jan; 185(2-3):1081-5. PubMed ID: 21036470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal processes for arsenic in constructed wetlands.
    Lizama A K; Fletcher TD; Sun G
    Chemosphere; 2011 Aug; 84(8):1032-43. PubMed ID: 21549410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands.
    Vacca G; Wand H; Nikolausz M; Kuschk P; Kästner M
    Water Res; 2005 Apr; 39(7):1361-73. PubMed ID: 15862336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants.
    Li H; Ye ZH; Wei ZJ; Wong MH
    Environ Pollut; 2011 Jan; 159(1):30-37. PubMed ID: 20970900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil.
    Zhang X; Ren BH; Wu SL; Sun YQ; Lin G; Chen BD
    Chemosphere; 2015 Jan; 119():224-230. PubMed ID: 25016555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox.
    Avila C; Reyes C; Bayona JM; García J
    Water Res; 2013 Jan; 47(1):315-25. PubMed ID: 23123085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated phytobial remediation for sustainable management of arsenic in soil and water.
    Roy M; Giri AK; Dutta S; Mukherjee P
    Environ Int; 2015 Feb; 75():180-98. PubMed ID: 25481297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.
    Raj A; Singh N
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):308-13. PubMed ID: 25666567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorus Removal in Constructed Stormwater Wetland Mesocosms Amended with Water Treatment Residuals.
    Vacca K; Komlos J; Wadzuk BM
    Water Environ Res; 2016; 88(9):898-906. PubMed ID: 27654086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America - a critical analysis.
    Bundschuh J; Litter M; Ciminelli VS; Morgada ME; Cornejo L; Hoyos SG; Hoinkis J; Alarcón-Herrera MT; Armienta MA; Bhattacharya P
    Water Res; 2010 Nov; 44(19):5828-45. PubMed ID: 20638705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing the removal of arsenic, boron and heavy metals in subsurface flow constructed wetlands using different supporting media.
    Allende KL; Fletcher TD; Sun G
    Water Sci Technol; 2011; 63(11):2612-8. PubMed ID: 22049756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.