These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21936535)

  • 1. Alternative "global warming" metrics in life cycle assessment: a case study with existing transportation data.
    Peters GP; Aamaas B; T Lund M; Solli C; Fuglestvedt JS
    Environ Sci Technol; 2011 Oct; 45(20):8633-41. PubMed ID: 21936535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considering time in LCA: dynamic LCA and its application to global warming impact assessments.
    Levasseur A; Lesage P; Margni M; Deschênes L; Samson R
    Environ Sci Technol; 2010 Apr; 44(8):3169-74. PubMed ID: 20302334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the climate effect of emissions of short- and long-lived climate agents.
    Shine KP; Berntsen TK; Fuglestvedt JS; Skeie RB; Stuber N
    Philos Trans A Math Phys Eng Sci; 2007 Jul; 365(1856):1903-14. PubMed ID: 17513272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling cumulative effects in life cycle assessment: the case of fertilizer in wheat production contributing to the global warming potential.
    Laratte B; Guillaume B; Kim J; Birregah B
    Sci Total Environ; 2014 May; 481():588-95. PubMed ID: 24631622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific climate impact of passenger and freight transport.
    Borken-Kleefeld J; Berntsen T; Fuglestvedt J
    Environ Sci Technol; 2010 Aug; 44(15):5700-6. PubMed ID: 20666553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling.
    Manfredi S; Christensen TH
    Waste Manag; 2009 Jan; 29(1):32-43. PubMed ID: 18445517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scientific issues in the design of metrics for inclusion of oxides of nitrogen in global climate agreements.
    Shine KP; Berntsen TK; Fuglestvedt JS; Sausen R
    Proc Natl Acad Sci U S A; 2005 Nov; 102(44):15768-73. PubMed ID: 16243971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane emissions: choosing the right climate metric and time horizon.
    Balcombe P; Speirs JF; Brandon NP; Hawkes AD
    Environ Sci Process Impacts; 2018 Oct; 20(10):1323-1339. PubMed ID: 30255177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for improving reliability and relevance of LCA reviews: the case of life-cycle greenhouse gas emissions of tap and bottled water.
    Fantin V; Scalbi S; Ottaviano G; Masoni P
    Sci Total Environ; 2014 Apr; 476-477():228-41. PubMed ID: 24463258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature.
    Cleary J
    Environ Int; 2009 Nov; 35(8):1256-66. PubMed ID: 19682746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life-cycle assessment of a biogas power plant with application of different climate metrics and inclusion of near-term climate forcers.
    Iordan C; Lausselet C; Cherubini F
    J Environ Manage; 2016 Dec; 184(Pt 3):517-527. PubMed ID: 27789091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: a case study of Tianjin, China.
    Zhao W; Huppes G; van der Voet E
    Waste Manag; 2011 Jun; 31(6):1407-15. PubMed ID: 21316937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do mitigation strategies reduce global warming potential in the northern U.S. corn belt?
    Johnson JM; Archer DW; Weyers SL; Barbour NW
    J Environ Qual; 2011; 40(5):1551-9. PubMed ID: 21869517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of management strategies on the global warming potential at the cropping system level.
    Goglio P; Grant BB; Smith WN; Desjardins RL; Worth DE; Zentner R; Malhi SS
    Sci Total Environ; 2014 Aug; 490():921-33. PubMed ID: 24911772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle assessment of first-generation biofuels using a nitrogen crop model.
    Gallejones P; Pardo G; Aizpurua A; del Prado A
    Sci Total Environ; 2015 Feb; 505():1191-201. PubMed ID: 25461117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the global warming potential of wooden products from the furniture sector to improve their ecodesign.
    González-García S; Gasol CM; Lozano RG; Moreira MT; Gabarrell X; Rieradevall i Pons J; Feijoo G
    Sci Total Environ; 2011 Dec; 410-411():16-25. PubMed ID: 22000917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.
    Mosier AR; Halvorson AD; Reule CA; Liu XJ
    J Environ Qual; 2006; 35(4):1584-98. PubMed ID: 16825479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty analysis of life cycle greenhouse gas emissions from petroleum-based fuels and impacts on low carbon fuel policies.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Jan; 45(1):125-31. PubMed ID: 21043516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.
    Hanafiah MM; Xenopoulos MA; Pfister S; Leuven RS; Huijbregts MA
    Environ Sci Technol; 2011 Jun; 45(12):5272-8. PubMed ID: 21574555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.