These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21936634)

  • 21. Amphotericin B resistance leads to enhanced proteinase and phospholipase activity and reduced germ tube formation in Candida albicans.
    Kumar R; Shukla PK
    Fungal Biol; 2010; 114(2-3):189-97. PubMed ID: 20943129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exposure of the yeast Candida albicans to the anti-neoplastic agent adriamycin increases the tolerance to amphotericin B.
    O'Keeffe J; Doyle S; Kavanagh K
    J Pharm Pharmacol; 2003 Dec; 55(12):1629-33. PubMed ID: 14738588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Candida albicans biofilm formation is associated with increased anti-oxidative capacities.
    Seneviratne CJ; Wang Y; Jin L; Abiko Y; Samaranayake LP
    Proteomics; 2008 Jul; 8(14):2936-47. PubMed ID: 18655069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Candida albicans Tpk1p and Tpk2p isoforms differentially regulate pseudohyphal development, biofilm structure, cell aggregation and adhesins expression.
    Giacometti R; Kronberg F; Biondi RM; Passeron S
    Yeast; 2011 Apr; 28(4):293-308. PubMed ID: 21456055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans.
    Messier C; Grenier D
    Mycoses; 2011 Nov; 54(6):e801-6. PubMed ID: 21615543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amphotericin B lipid complex is efficacious in the treatment of Candida albicans biofilms using a model of catheter-associated Candida biofilms.
    Mukherjee PK; Long L; Kim HG; Ghannoum MA
    Int J Antimicrob Agents; 2009 Feb; 33(2):149-53. PubMed ID: 18945596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clade-related phenotypic switching among fluconazole resistant Candida albicans isolates.
    Molepo J; Musenge E
    SADJ; 2012 Aug; 67(7):326-8. PubMed ID: 23951786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Biofilm production and antifungal susceptibility patterns of Candida species].
    Yücesoy M; Karaman M
    Mikrobiyol Bul; 2004; 38(1-2):91-8. PubMed ID: 15293907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A small subpopulation of blastospores in candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and beta-1,6-glucan pathway genes.
    Khot PD; Suci PA; Miller RL; Nelson RD; Tyler BJ
    Antimicrob Agents Chemother; 2006 Nov; 50(11):3708-16. PubMed ID: 16966398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of Candida albicans biofilm formation on denture material.
    Redding S; Bhatt B; Rawls HR; Siegel G; Scott K; Lopez-Ribot J
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2009 May; 107(5):669-72. PubMed ID: 19426921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linking quorum sensing regulation and biofilm formation by Candida albicans.
    Deveau A; Hogan DA
    Methods Mol Biol; 2011; 692():219-33. PubMed ID: 21031315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans.
    Ramage G; VandeWalle K; López-Ribot JL; Wickes BL
    FEMS Microbiol Lett; 2002 Aug; 214(1):95-100. PubMed ID: 12204378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of Candida albicans growth by brominated furanones.
    Duo M; Zhang M; Luk YY; Ren D
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1551-63. PubMed ID: 19756586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative Ploidy Proteomics of Candida albicans Biofilms Unraveled the Role of the AHP1 Gene in the Biofilm Persistence Against Amphotericin B.
    Truong T; Zeng G; Qingsong L; Kwang LT; Tong C; Chan FY; Wang Y; Seneviratne CJ
    Mol Cell Proteomics; 2016 Nov; 15(11):3488-3500. PubMed ID: 27644984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans.
    Phillips AJ; Sudbery I; Ramsdale M
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14327-32. PubMed ID: 14623979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathogenesis of Candida albicans biofilm.
    Tsui C; Kong EF; Jabra-Rizk MA
    Pathog Dis; 2016 Jun; 74(4):ftw018. PubMed ID: 26960943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of RPS41 in Biofilm Formation, Virulence, and Hydrogen Peroxide Sensitivity in Candida albicans.
    Lu H; Xiong J; Shang Q; Jiang Y; Cao Y
    Curr Microbiol; 2016 Jun; 72(6):783-7. PubMed ID: 26952720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time course analysis of Candida albicans metabolites during biofilm development.
    Zhu Z; Wang H; Shang Q; Jiang Y; Cao Y; Chai Y
    J Proteome Res; 2013 Jun; 12(6):2375-85. PubMed ID: 22834926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phenotypic switching in Candida tropicalis: association with modification of putative virulence attributes and antifungal drug sensitivity.
    Moralez AT; França EJ; Furlaneto-Maia L; Quesada RM; Furlaneto MC
    Med Mycol; 2014 Jan; 52(1):106-14. PubMed ID: 23971864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Genetic regulatory mechanisms of Candida albicans biofilm formation].
    Guo D; Yue H; Wei Y; Huang G
    Sheng Wu Gong Cheng Xue Bao; 2017 Sep; 33(9):1567-1581. PubMed ID: 28956402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.