These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21937048)

  • 21. Electrostatic contributions to protein retention in ion-exchange chromatography. 2. Proteins with various degrees of structural differences.
    Yao Y; Lenhoff AM
    Anal Chem; 2005 Apr; 77(7):2157-65. PubMed ID: 15801750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Equilibrium-based approach for prediction of matrix-related interferences in anion chromatography.
    Hajós P; Horváth K
    J Chromatogr A; 2008 Jul; 1198-1199():101-6. PubMed ID: 18550073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of protein retention times in gradient hydrophobic interaction chromatographic systems.
    Chen J; Yang T; Cramer SM
    J Chromatogr A; 2008 Jan; 1177(2):207-14. PubMed ID: 18048048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification of protein binding in hydroxyapatite chromatography: synergistic interactions on the molecular scale.
    Hou Y; Morrison CJ; Cramer SM
    Anal Chem; 2011 May; 83(10):3709-16. PubMed ID: 21495696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retention profiles and mechanism of anion separation on latex-based pellicular ion exchanger in ion chromatography.
    Horváth K; Hajós P
    J Chromatogr A; 2006 Feb; 1104(1-2):75-81. PubMed ID: 16337639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput screening and quantitative structure-efficacy relationship models of potential displacer molecules for ion-exchange systems.
    Mazza CB; Rege K; Breneman CM; Sukumar N; Dordick JS; Cramer SM
    Biotechnol Bioeng; 2002 Oct; 80(1):60-72. PubMed ID: 12209787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: a study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode.
    Bicker W; Wu J; Yeman H; Albert K; Lindner W
    J Chromatogr A; 2011 Feb; 1218(7):882-95. PubMed ID: 21067765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of arginine on multimodal anion exchange chromatography.
    Hirano A; Arakawa T; Kameda T
    Protein Expr Purif; 2015 Dec; 116():105-12. PubMed ID: 26225914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrostatic calculations and quantitative protein retention models for ion exchange chromatography.
    Malmquist G; Nilsson UH; Norrman M; Skarp U; Strömgren M; Carredano E
    J Chromatogr A; 2006 May; 1115(1-2):164-86. PubMed ID: 16620840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors.
    D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E
    Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigations of mobile phase contributions to enantioselective anion- and zwitterion-exchange modes on quinine-based zwitterionic chiral stationary phases.
    Hoffmann CV; Reischl R; Maier NM; Lämmerhofer M; Lindner W
    J Chromatogr A; 2009 Feb; 1216(7):1157-66. PubMed ID: 19144343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of urea induced protein conformational changes on ion exchange chromatographic behavior.
    Hou Y; Hansen TB; Staby A; Cramer SM
    J Chromatogr A; 2010 Nov; 1217(47):7393-400. PubMed ID: 20956007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of multi-modal high-salt binding ion-exchange chromatography using quantitative structure-property relationship modeling.
    Yang T; Breneman CM; Cramer SM
    J Chromatogr A; 2007 Dec; 1175(1):96-105. PubMed ID: 17991474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ion-exchange chromatographic protein refolding.
    Freydell EJ; van der Wielen L; Eppink M; Ottens M
    J Chromatogr A; 2010 Nov; 1217(46):7265-74. PubMed ID: 20933240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of selectivity changes in HIC systems using a preferential interaction based analysis.
    Xia F; Nagrath D; Garde S; Cramer SM
    Biotechnol Bioeng; 2004 Aug; 87(3):354-63. PubMed ID: 15281110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of selected ionic liquid cations by ion exchange chromatography and reversed-phase high performance liquid chromatography.
    Stepnowski P; Mrozik W
    J Sep Sci; 2005 Feb; 28(2):149-54. PubMed ID: 15754822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Behavior of the inadvertent pH transient formed by a salt gradient in the ion-exchange chromatography of proteins.
    Pérez JS; Frey DD
    Biotechnol Prog; 2005; 21(3):902-10. PubMed ID: 15932272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of ligand density on the optimization of ion-exchange membrane chromatography for viral vector purification.
    Vicente T; Fáber R; Alves PM; Carrondo MJ; Mota JP
    Biotechnol Bioeng; 2011 Jun; 108(6):1347-59. PubMed ID: 21294110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of protein retention times in anion-exchange chromatography systems using support vector regression.
    Song M; Breneman CM; Bi J; Sukumar N; Bennett KP; Cramer S; Tugcu N
    J Chem Inf Comput Sci; 2002; 42(6):1347-57. PubMed ID: 12444731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption and separation of proteins by a synthetic hydrotalcite.
    Ralla K; Sohling U; Suck K; Sander F; Kasper C; Ruf F; Scheper T
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):217-25. PubMed ID: 21684727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.