These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21937112)

  • 21. Responses of eucalypt species to aluminum: the possible involvement of low molecular weight organic acids in the Al tolerance mechanism.
    Silva IR; Novais RF; Jham GN; Barros NF; Gebrim FO; Nunes FN; Neves JC; Leite FP
    Tree Physiol; 2004 Nov; 24(11):1267-77. PubMed ID: 15339736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytochelatin and coumarin enrichment in root exudates of arsenic-treated white lupin.
    Frémont A; Sas E; Sarrazin M; Gonzalez E; Brisson J; Pitre FE; Brereton NJB
    Plant Cell Environ; 2022 Mar; 45(3):936-954. PubMed ID: 34392550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses.
    Fu L; Chen C; Wang B; Zhou X; Li S; Guo P; Shen Z; Wang G; Chen Y
    PLoS One; 2015; 10(7):e0133424. PubMed ID: 26207743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytoremediation potential of Helianthus annuus L in sewage-irrigated Indo-Gangetic alluvial soils.
    Mani D; Sharma B; Kumar C; Pathak N; Balak S
    Int J Phytoremediation; 2012 Mar; 14(3):235-46. PubMed ID: 22567708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper.
    De Conti L; Ceretta CA; Tiecher TL; da Silva LOS; Tassinari A; Somavilla LM; Mimmo T; Cesco S; Brunetto G
    Ecotoxicol Environ Saf; 2018 Nov; 163():19-27. PubMed ID: 30031941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The potential of two different Avena sativa L. cultivars to alleviate Cu toxicity.
    Marastoni L; Tauber P; Pii Y; Valentinuzzi F; Astolfi S; Simoni A; Brunetto G; Cesco S; Mimmo T
    Ecotoxicol Environ Saf; 2019 Oct; 182():109430. PubMed ID: 31306921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential responses of root growth, acid invertase activity and transcript level to copper stress in two contrasting populations of Elsholtzia haichowensis.
    Cai S; Xiong Z; Li L; Li M; Zhang L; Liu C; Xu Z
    Ecotoxicology; 2014 Jan; 23(1):76-91. PubMed ID: 24233160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of excess copper on growth and physiology of important food crops: a review.
    Adrees M; Ali S; Rizwan M; Ibrahim M; Abbas F; Farid M; Zia-Ur-Rehman M; Irshad MK; Bharwana SA
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8148-62. PubMed ID: 25874438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure.
    Martínez-Fernández D; Barroso D; Komárek M
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1732-41. PubMed ID: 26396006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper-resistant bacteria enhance plant growth and copper phytoextraction.
    Yang R; Luo C; Chen Y; Wang G; Xu Y; Shen Z
    Int J Phytoremediation; 2013; 15(6):573-84. PubMed ID: 23819298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower.
    Kolbas A; Mench M; Herzig R; Nehnevajova E; Bes CM
    Int J Phytoremediation; 2011; 13 Suppl 1():55-76. PubMed ID: 22046751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of comparative toxicities of lead and copper using plant assay.
    An YJ
    Chemosphere; 2006 Mar; 62(8):1359-65. PubMed ID: 16153686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: Influences on copper bioavailability and uptake.
    McManus P; Hortin J; Anderson AJ; Jacobson AR; Britt DW; Stewart J; McLean JE
    Environ Toxicol Chem; 2018 Oct; 37(10):2619-2632. PubMed ID: 29978493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Cu2+ on root growth, cell division, and nucleolus of Helianthus annuus L.
    Jiang W; Liu D; Li H
    Sci Total Environ; 2000 Jun; 256(1):59-65. PubMed ID: 10898387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological and biochemical characterization of copper-toxicity tolerance mechanism in grass species native to Pampa Biome and Atlantic Forest for use in phytoremediation.
    Marques ACR; Hindersmann J; Trentin E; De Conti L; Drescher GL; Somavilla A; Tabaldi LA; Schawalbert R; Birck TP; Nicoloso FT; Brunetto G
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):5076-5088. PubMed ID: 35978233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress.
    Javed MT; Akram MS; Habib N; Tanwir K; Ali Q; Niazi NK; Gul H; Iqbal N
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2958-2971. PubMed ID: 29147985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of methods to measure differential 15N labeling of soil and root N pools for studies of root exudation.
    Hertenberger G; Wanek W
    Rapid Commun Mass Spectrom; 2004; 18(20):2415-25. PubMed ID: 15386635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions.
    Gómez DA; Carpena RO
    J Plant Physiol; 2014 Sep; 171(15):1354-61. PubMed ID: 25046756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils.
    De Conti L; Ceretta CA; Melo GWB; Tiecher TL; Silva LOS; Garlet LP; Mimmo T; Cesco S; Brunetto G
    Chemosphere; 2019 Feb; 216():147-156. PubMed ID: 30366268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.