These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21937178)

  • 1. Clinical applications of 7 T MRI in the brain.
    van der Kolk AG; Hendrikse J; Zwanenburg JJ; Visser F; Luijten PR
    Eur J Radiol; 2013 May; 82(5):708-18. PubMed ID: 21937178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh-field magnetic resonance imaging: the clinical potential for anatomy, pathogenesis, diagnosis, and treatment planning in brain disease.
    van der Kolk AG; Hendrikse J; Luijten PR
    Neuroimaging Clin N Am; 2012 May; 22(2):343-62, xii. PubMed ID: 22548936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3.0-T functional brain imaging: a 5-year experience.
    Scarabino T; Giannatempo GM; Popolizio T; Tosetti M; d'Alesio V; Esposito F; Di Salle F; Di Costanzo A; Bertolino A; Maggialetti A; Salvolini U
    Radiol Med; 2007 Feb; 112(1):97-112. PubMed ID: 17310287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3T MRI: advances in brain imaging.
    Alvarez-Linera J
    Eur J Radiol; 2008 Sep; 67(3):415-26. PubMed ID: 18455895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research progress of techniques of 7 T MRI system in brain imaging].
    Lin L; Hao D; Bai Y; Gao H; Wu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Oct; 30(5):1127-30. PubMed ID: 24459983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain tumor enhancement in MR imaging at 3 Tesla: comparison of SNR and CNR gain using TSE and GRE techniques.
    Wintersperger BJ; Runge VM; Biswas J; Reiser MF; Schoenberg SO
    Invest Radiol; 2007 Aug; 42(8):558-63. PubMed ID: 17620938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2, 1.5, and 3.0 tesla.
    Martirosian P; Boss A; Deimling M; Kiefer B; Schraml C; Schwenzer NF; Claussen CD; Schick F
    Invest Radiol; 2008 Jan; 43(1):16-26. PubMed ID: 18097273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Clinical highfield MR].
    Schild H
    Rofo; 2005 May; 177(5):621-31. PubMed ID: 15871076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High field body MR imaging: preliminary experiences.
    Uematsu H; Takahashi M; Dougherty L; Hatabu H
    Clin Imaging; 2004; 28(3):159-62. PubMed ID: 15158217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives and limitations of parallel MR imaging at high field strengths.
    Heidemann RM; Seiberlich N; Griswold MA; Wohlfarth K; Krueger G; Jakob PM
    Neuroimaging Clin N Am; 2006 May; 16(2):311-20, xi. PubMed ID: 16731369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Clinical applications of 3.0 T magnetic resonance system in the neuroradiological field].
    Matsusue E; Ogawa T
    Brain Nerve; 2007 May; 59(5):479-85. PubMed ID: 17533973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T.
    Krug R; Stehling C; Kelley DA; Majumdar S; Link TM
    Invest Radiol; 2009 Sep; 44(9):613-8. PubMed ID: 19652609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of myocardial viability using delayed enhancement magnetic resonance imaging at 3.0 Tesla.
    Klumpp B; Fenchel M; Hoevelborn T; Helber U; Scheule A; Claussen C; Miller S
    Invest Radiol; 2006 Sep; 41(9):661-7. PubMed ID: 16896300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostic value of contrast-enhanced fluid-attenuated inversion-recovery MRI for intracranial tumors in comparison with post-contrast T1W spin-echo MRI.
    Zhou ZR; Shen TZ; Chen XR; Peng WJ
    Chin Med J (Engl); 2006 Mar; 119(6):467-73. PubMed ID: 16584644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac magnetic resonance parallel imaging at 3.0 Tesla: technical feasibility and advantages.
    McGee KP; Debbins JP; Boskamp EB; Blawat L; Angelos L; King KF
    J Magn Reson Imaging; 2004 Mar; 19(3):291-7. PubMed ID: 14994296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fMRI at 7 T: whole-brain coverage and signal advantages even infratentorially?
    Gizewski ER; de Greiff A; Maderwald S; Timmann D; Forsting M; Ladd ME
    Neuroimage; 2007 Sep; 37(3):761-8. PubMed ID: 17644414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance imaging of the cranial nerves in the posterior fossa: a comparative study of t2-weighted spin-echo sequences at 1.5 and 3.0 tesla.
    Fischbach F; Müller M; Bruhn H
    Acta Radiol; 2008 Apr; 49(3):358-63. PubMed ID: 18365827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging.
    Frayne R; Goodyear BG; Dickhoff P; Lauzon ML; Sevick RJ
    Invest Radiol; 2003 Jul; 38(7):385-402. PubMed ID: 12821852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The value of conventional high-field MRI in MS in the light of the McDonald criteria: a literature review.
    Lunde Larsen LS; Larsson HB; Frederiksen JL
    Acta Neurol Scand; 2010 Sep; 122(3):149-58. PubMed ID: 20597869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic MRI of the brain in a clinical setting.
    Blystad I; Warntjes JB; Smedby O; Landtblom AM; Lundberg P; Larsson EM
    Acta Radiol; 2012 Dec; 53(10):1158-63. PubMed ID: 23024181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.