BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 21937431)

  • 1. Silkworm apolipophorin protein inhibits Staphylococcus aureus virulence.
    Hanada Y; Sekimizu K; Kaito C
    J Biol Chem; 2011 Nov; 286(45):39360-9. PubMed ID: 21937431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids.
    Omae Y; Hanada Y; Sekimizu K; Kaito C
    J Biol Chem; 2013 Aug; 288(35):25542-25550. PubMed ID: 23873929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel DNA binding protein SarZ contributes to virulence in Staphylococcus aureus.
    Kaito C; Morishita D; Matsumoto Y; Kurokawa K; Sekimizu K
    Mol Microbiol; 2006 Dec; 62(6):1601-17. PubMed ID: 17087772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apolipophorin-III expression and low density lipophorin formation during embryonic development of the silkworm, Bombyx mori.
    Tsuchida K; Yokoyama T; Sakudoh T; Katagiri C; Tsurumaru S; Takada N; Fujimoto H; Ziegler R; Iwano H; Hamano K; Yaginuma T
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Apr; 155(4):363-70. PubMed ID: 20079870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Staphylococcus aureus aggregation in the plasma fraction of silkworm hemolymph.
    Ryuno H; Nigo F; Naguro I; Sekimizu K; Kaito C
    PLoS One; 2019; 14(5):e0217517. PubMed ID: 31145754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Staphylococcus aureus virulence factors using a silkworm model.
    Miyazaki S; Matsumoto Y; Sekimizu K; Kaito C
    FEMS Microbiol Lett; 2012 Jan; 326(2):116-24. PubMed ID: 22092964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An apolipophorin III protein from the hemolymph of desert locust, Schistocerca gregaria.
    Malik ZA; Amir S
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1779-88. PubMed ID: 21976149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of a versatile pattern recognition receptor, apolipophorin-III in prophenoloxidase activation and antibacterial defense of the Chinese oak silkworm, Antheraea pernyi.
    Wen D; Wang X; Shang L; Huang Y; Li T; Wu C; Zhang R; Zhang J
    Dev Comp Immunol; 2016 Dec; 65():124-131. PubMed ID: 27387151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eriodictyol protects against Staphylococcus aureus-induced lung cell injury by inhibiting alpha-hemolysin expression.
    Xuewen H; Ping O; Zhongwei Y; Zhongqiong Y; Hualin F; Juchun L; Changliang H; Gang S; Zhixiang Y; Xu S; Yuanfeng Z; Lixia L; Lizi Y
    World J Microbiol Biotechnol; 2018 Apr; 34(5):64. PubMed ID: 29671126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CvfA protein and polynucleotide phosphorylase act in an opposing manner to regulate Staphylococcus aureus virulence.
    Numata S; Nagata M; Mao H; Sekimizu K; Kaito C
    J Biol Chem; 2014 Mar; 289(12):8420-31. PubMed ID: 24492613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphodiesterase activity of CvfA is required for virulence in Staphylococcus aureus.
    Nagata M; Kaito C; Sekimizu K
    J Biol Chem; 2008 Jan; 283(4):2176-84. PubMed ID: 17951247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cvfC operon of Staphylococcus aureus contributes to virulence via expression of the thyA gene.
    Ikuo M; Kaito C; Sekimizu K
    Microb Pathog; 2010; 49(1-2):1-7. PubMed ID: 20347953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of agr-dependent virulence genes in Staphylococcus aureus by RNAIII from coagulase-negative staphylococci.
    Tegmark K; Morfeldt E; Arvidson S
    J Bacteriol; 1998 Jun; 180(12):3181-6. PubMed ID: 9620969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subinhibitory concentrations of resveratrol reduce alpha-hemolysin production in Staphylococcus aureus isolates by downregulating saeRS.
    Duan J; Li M; Hao Z; Shen X; Liu L; Jin Y; Wang S; Guo Y; Yang L; Wang L; Yu F
    Emerg Microbes Infect; 2018 Jul; 7(1):136. PubMed ID: 30065273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterisation of Apolipophorin-III gene in Samia cynthia ricini and its roles in response to bacterial infection.
    Yu HZ; Wang J; Zhang SZ; Toufeeq S; Li B; Li Z; Yang LA; Hu P; Xu JP
    J Invertebr Pathol; 2018 Nov; 159():61-70. PubMed ID: 30347207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immune activation of apolipophorin-III and its distribution in hemocyte from Hyphantria cunea.
    Kim HJ; Je HJ; Park SY; Lee IH; Jin BR; Yun HK; Yun CY; Han YS; Kang YJ; Seo SJ
    Insect Biochem Mol Biol; 2004 Oct; 34(10):1011-23. PubMed ID: 15475296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of an insect apolipoprotein (apolipophorin-II/I) involved in the host immune response of Antheraea pernyi.
    Wen D; Luo H; Li T; Wu C; Zhang J; Wang X; Zhang R
    Dev Comp Immunol; 2017 Dec; 77():221-228. PubMed ID: 28830681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artesunate inhibits Staphylococcus aureus biofilm formation by reducing alpha-toxin synthesis.
    Qian Y; Xia L; Wei L; Li D; Jiang W
    Arch Microbiol; 2021 Mar; 203(2):707-717. PubMed ID: 33040179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of apolipophorin III from immune hemolymph of Heliothis virescens pupae.
    Chung KT; Ourth DD
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Jun; 132(2):505-14. PubMed ID: 12031477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic characterization of the conformational adaptability of Bombyx mori apolipophorin III.
    Narayanaswami V; Yamauchi Y; Weers PM; Maekawa H; Sato R; Tsuchida K; Oikawa K; Kay CM; Ryan RO
    Eur J Biochem; 2000 Feb; 267(3):728-36. PubMed ID: 10651809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.